The meeting follows what is becoming the established format of themed days and streams, with integrated training sessions complementing the lecture sessions. Sessions are built around an excellent range of invited speakers. The main highlight of the meeting this year will be the eponymous Donald MacVicar Brown lecture delivered by Prof Paul Sidhu from Kings College Hospital, London.

Re-introduced for 2018 are the Veterinary and Breast sessions, and practical sessions on Bowel, Intervention, Liver and Doppler technique. A new addition is the Student Education Session to encourage the new generation of sonographers to share their work and research in a supportive environment.

The technical exhibition is fully booked and should be lively, with all major manufacturers represented as well as many other exhibitors with products and services to offer the ultrasound community. We are grateful in particular for the support of this year’s Platinum Sponsor, Siemens Healthineers who are supporting both the Welcome Reception at the end of Day One and the Gala Dinner and Awards Ceremony being held at the beautiful Monastery in Gorton.

I should like to thank the stream leads and members of the Scientific and Education Committee. Their hard work and dedication ensure that the Annual Scientific Meeting (and other study days run for BMUS) are of consistently high quality. I should also like to thank Joy Whyte and her team in the BMUS Office; their dedicated organisational efforts and hard work ensuring that the meeting actually happens.

Enjoy the meeting and welcome to Manchester!

Gerry Johnson

Chair, Annual Scientific Meeting Organising Committee 2018.

BMUS would like to thank the following members of the BMUS Scientific and Education Committee, the 2018 Scientific Organising Committee and staff for their contribution and delivery of the 2018 education programmes.

Mrs Helen Brown, Birmingham
Mrs Abby Caine, Cambridge
Dr Peter Cantin, Plymouth
Dr Trish Chudleigh, Cambridge
Dr Nick Dudley, Lincoln
Mrs Kirstie Godson, Wakefield
Dr Nigel Grunshaw, Furness
Mrs Alison Hall, Stafford
Ms Therese Herlihy, Dublin
Mrs Terry Humphrey, Leeds
Mr Gerry Johnson, Manchester
Mrs Catherine Kirkpatrick, Lincoln
Prof Adrian Lim, London
Mrs Angie Lloyd-Jones, Runcorn
Mrs Alison McGuinness, Wakefield
Dr Carmel Moran, Edinburgh
Dr Mary Moran, Dublin
Mrs Pamela Parker, Hull
Mr Stephen Russell, Manchester
Dr Keshthra Satchithananda, London
Mrs Katie Simm, Prescot
Ms Alison Smith, London
Prof Gail ter Haar, London
Mrs Lorelei Waring, Lancaster
Mrs Emma Waldegrave, London
Mrs Rachel Wilson, Hull
Mrs Tracey Clarke (BMUS Office Administrator)
Mrs Mandy Cove (BMUS Events and Marketing Co-ordinator)
Ms Emma Tucker (BMUS Development Manager)
Mrs Joy Whyte (BMUS Executive Officer)
The right answer, first time, every time, and in less time.

At Philips, we’ve been at the forefront of innovation in ultrasound for more than 30 years and today, our broad portfolio continues to address the changing needs of healthcare. Our unique combination of high-quality images and clinical information is providing the right answers to millions of people around the world.

This year at BMUS we are pleased to deliver a selection of educational sessions which will take place at the following times:

4th December at 13:15h
Shear wave elastography
How to reduce the need for costly and painful biopsies in some patients

4th December at 15:30h
Moving from 2D to 3D ultrasound in radiology
With Dr Ben Stenberg, using xMatrix technology

5th December at 10:30h
Small parts ultrasound imaging
Now possible with a single transducer

5th December at 15:00h
The use of ultrasound, everywhere!
Breaking barriers with Philips Lumify

Join us on stand 13 to discover the latest innovation in general ultrasound imaging

www.philips.co.uk/ultrasound/BMUS
Contents

Information
- General Information...
- Ultrasound 2018 Conference App...
- CPD and Feedback...

Scientific Programme
Day 1 – Tuesday 4th December 2018
- 18 - 28

Day 2 – Wednesday 5th December 2018
- 30 - 44

Day 3 – Thursday 6th December 2018
- 46 - 55

2018 Keynote Lectures:
- Donald MacVicar Brown – Tuesday 4th December 2018
- 13

2018 Young Investigator Session
- 15 - 16

Poster Exhibition
- 57 - 86

Proceedings
- 105 - 138

Social Events
- Welcome Reception – Tuesday 4th December 2018
- 21

- Annual Gala Dinner and Awards Ceremony – Wednesday 5th December 2018
- 87

Technical Exhibition
- List of Exhibitors
- Exhibition Plan
- Education on the Stand
- Exhibitor Profiles
- 89 - 102

Future Events
- BMUS Study Days 2019
- 140

- Annual Scientific Meeting 2019
- 142 - 143
GENERAL INFORMATION

The Point

Emirates Old Trafford, Talbot Rd, Stretford, Manchester, M16 0PX

CONFERENCE TIMES

Tuesday 4th December
09:30 - 17:00 Scientific Sessions
17:00 Welcome reception, Exhibition Hall 2nd Floor, The Point

Wednesday 5th December
09:00 -17:00 Scientific Sessions
19.00 BMUS Annual Dinner and Awards Ceremony, The Monastery, 89 Gorton Lane, Manchester M12 5WF

Thursday 6th December
09:00 -16:00 Scientific Sessions
14.00 Technical Exhibition closes.

DELEGATE BADGES

Attendees are required to wear their badges at all times to gain access to any part of the event. Access to the practical training sessions is via the appropriate wristband which will be in your delegate pack.

Please leave your badges at the registration desk at the end of your meeting attendance.

CONTINUING PROFESSIONAL DEVELOPMENT (CPD)

The meeting has been awarded the following BMUS CPD credits and Category I RCR CPD credits-
All 3 days- 21 credits
Day 1 - 7 credits
Day 2 - 7 credits
Day 3 - 7 credits
CPD certificates will be provided in an e-format by 31st January on completion of the online feedback form.

FEEDBACK

Feedback will be collected via completion of an electronic feedback form which will be sent to delegates at the end of their attendance at the meeting, the online feedback form will also be available on the 2018 Conference App to complete. BMUS would be grateful if delegates would take time to complete these forms, as the feedback forms helps the preparation of future meetings.

CATERING AND REFRESHMENTS

Lunches and refreshments are included in the registration fee. Catering and coffee points are located in the Exhibition Hall.

CLOAKROOM

A manned cloakroom is located on the ground floor of The Point adjacent to the registration points. Please do not leave bags or personal items unattended whilst attending the conference. While every effort is made to keep your belongings secure, neither the Emirates Old Trafford, Lancashire County Cricket Club or BMUS can be held liable for any loss or damage.

WiFi

Free WiFi is available throughout the venue via the venue’s network free Wifi. This can be accessed by entering brief details into a login page.
Exhibition Hall and the Mezzanine Practical Training held in The Point the details are:
Username: The Point
Password: Lancashire1864
In the lecture theatres (Member’s Suite, 1864 Suite, Lancaster Suite and the Brown Shipley Club Suite held in The Pavilion the details are:
Username: LCCC Members
Password: statham1

SOCIAL MEDIA

We will be updating our social media throughout the conference.
Our hashtag is #Ultrasound2018 - feel free to get tweeting and posting!
Our Twitter handle is @BMUS_Ultrasound
Our Facebook page is BMUS (British Medical Soc)

2018 CONFERENCE APP

Please download the conference app from the App Store for Apple devices and Google Play store for Android devices by searching ‘Ultrasound 2018’. The app has free access to make the experience simple and quick.
GENERAL INFORMATION
The Point

Emirates Old Trafford, Talbot Rd, Stretford, Manchester, M16 0PX

VIDEO FOOTAGE
The lectures in Plenary 1, 2 and 3 of the conference will be recorded. However please note that the footage will be available on the BMUS website to BMUS members only.

PERSONAL RECORDING LECTURES
As the invited speakers have the option to refuse being included in the conference recording, personal recording of any lectures during the conference is strictly forbidden.

GENERAL DATA PROTECTION REGULATIONS
Delegate badges will offer the facility for data capture, this information is limited to the delegate’s name, workplace and e-mail address. If you do not wish to share your personal information, you should not allow your delegate badge to be scanned.

BMUS takes its responsibility in respect of your personal information seriously, and all information given at the time of registration will be treated as confidential and will not be shared.

PHOTOGRAPHY
Please be aware that during the event BMUS employs a photographer to take images for later publication in our BMUS newsletter, e-Newsletter Ultrapost and on the BMUS website.
This year BMUS will be collecting delegate feedback through survey monkey. You can access this either through the BMUS conference app or via an email that will be sent to you during the conference. We are keen to collect feedback on all aspects of the Annual Scientific Meeting and have produced a comprehensive set of questions covering each session. Please take some time to complete this as it will be used to inform future events.

Once we have received your feedback survey your CPD certificate will be issued from the BMUS office. CPD certificates will only be issued to surveys that are fully complete. You should receive your CPD certificate by the end of January. The feedback survey will close midnight on 11th January 2019.

The feedback we receive will help us to:

- Prepare future events
- Provide constructive feedback to our speakers
- Feedback to the venue
- Measure the success and value of the ASM

Thank you in advance for taking the time to complete the feedback questionnaire. If you have any problems please email emma@bmus.org.
BMUS would like to express its grateful thanks to the following companies for their support of Ultrasound 2018

<table>
<thead>
<tr>
<th>Advanced Ultrasound Electronics Ltd</th>
<th>Mercy Radiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowen Therapy</td>
<td>Mermaid Medical UK</td>
</tr>
<tr>
<td>Bracco Imaging SpA</td>
<td>MIS Healthcare</td>
</tr>
<tr>
<td>Canon Medical Systems Ltd</td>
<td>Nanosonics</td>
</tr>
<tr>
<td>Casmed International Ltd</td>
<td>Pacific Radiology</td>
</tr>
<tr>
<td>Diagnostic Healthcare</td>
<td>Philips</td>
</tr>
<tr>
<td>Easypay Network</td>
<td>Physiological measurements</td>
</tr>
<tr>
<td>Esaote</td>
<td>RH Logistics</td>
</tr>
<tr>
<td>GE Healthcare</td>
<td>Siemens Healthineers</td>
</tr>
<tr>
<td>Germitec</td>
<td>The Birth Company</td>
</tr>
<tr>
<td>Globe Locums</td>
<td>The College of Radiographers</td>
</tr>
<tr>
<td>Hitachi Medical Systems Ltd</td>
<td>Tristel Solutions Ltd</td>
</tr>
<tr>
<td>MedaPhor</td>
<td>UKAS</td>
</tr>
<tr>
<td>Medecon Ltd</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF EXHIBITORS

2018

Main Exhibition Hall

<table>
<thead>
<tr>
<th>STAND NUMBER</th>
<th>COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hitachi</td>
</tr>
<tr>
<td>2 & 3</td>
<td>Nanosonics</td>
</tr>
<tr>
<td>4</td>
<td>AUE – Advanced Ultrasound Electronics Ltd</td>
</tr>
<tr>
<td>5</td>
<td>Pacific Radiology</td>
</tr>
<tr>
<td>6</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>7</td>
<td>Canon</td>
</tr>
<tr>
<td>8</td>
<td>Tristel</td>
</tr>
<tr>
<td>9</td>
<td>UKAS</td>
</tr>
<tr>
<td>10</td>
<td>Siemens</td>
</tr>
<tr>
<td>11 & 12</td>
<td>Physiological Measurements</td>
</tr>
<tr>
<td>13</td>
<td>Philips</td>
</tr>
<tr>
<td>14</td>
<td>The Society & College of Radiographers</td>
</tr>
<tr>
<td>15</td>
<td>Casmed</td>
</tr>
<tr>
<td>16</td>
<td>Esaote</td>
</tr>
<tr>
<td>17</td>
<td>MIS Healthcare</td>
</tr>
<tr>
<td>18</td>
<td>Bracco</td>
</tr>
<tr>
<td>19</td>
<td>Medaphor</td>
</tr>
<tr>
<td>20</td>
<td>The Birth Company</td>
</tr>
<tr>
<td>21</td>
<td>Globe Locums</td>
</tr>
<tr>
<td>22</td>
<td>Mermaid Medical</td>
</tr>
<tr>
<td>23</td>
<td>EasyPay Network</td>
</tr>
<tr>
<td>24</td>
<td>Mercy Radiology</td>
</tr>
<tr>
<td>27</td>
<td>Medecon</td>
</tr>
<tr>
<td>28</td>
<td>Diagnostic Healthcare</td>
</tr>
<tr>
<td>29</td>
<td>RH Logistics</td>
</tr>
<tr>
<td>31</td>
<td>Germitec</td>
</tr>
<tr>
<td>32</td>
<td>Bowen Therapy</td>
</tr>
</tbody>
</table>
Tuesday 4th December

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Presenter/Details</th>
</tr>
</thead>
</table>
| 13:15 – 13.35 | **Shear wave elastography**
How to reduce the need for costly and painful biopsies in some patients | Philips |
| 15:30 – 15.50 | **Moving from 2D to 3D ultrasound in radiology**
With Dr Benjamin Stenberg, using xMatrix technology | Philips |

Wednesday 5th December

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Presenter/Details</th>
</tr>
</thead>
</table>
| 10:30 – 10.50 | **Small parts ultrasound imaging**
Now possible with a single transducer | Philips |
| 13.00 – 13.30 | **BioAcoustic Imaging – Taking Ultrasound to New Heights!**
As our patients present with ever increasing biodiversity and challenge us to image to new heights and indeed great depth, Siemens Healthineers presents a series of ultrasound case studies, undertaken with the ACUSON Sequoia, demonstrating new innovations in deep abdominal imaging; advanced ultrasound applications such as point and 2D shearwave technologies and advanced contrast enhanced ultrasound (CEUS). Join us to experience how Siemens Healthineers has addressed current challenges in abdominal imaging and to witness in real time the capabilities of the ACUSON Sequoia. | Siemens Healthineers |
| 15:00 – 15.20 | **The use of ultrasound, everywhere!**
Breaking barriers with Philips Lumify | Philips |

Thursday 6th December

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Presenter/Details</th>
</tr>
</thead>
</table>
| 13.25 – 13.45 | **Vasa Praevia: A logical Approach -**
Elizabeth Daly-Jones, Imperial College Healthcare NHS Trust
People only see what they are prepared to see. Ralph Waldo-Emerson.
Vasa praevia (VP) has a reported fetal mortality rate of 60% if not recognized before attempt at vaginal delivery. Prenatal detection by ultrasound is possible in nearly all cases, but this can be notoriously difficult unless there is a high index of suspicion. This talk will focus on the ultrasound diagnosis and address some of the challenges that the sonographer might face. There will be illustrations of recent cases involving expert Histological review. 1.RCOG (January 2011) Greentop guideline no. 27 Placenta Praevia, Placenta Accreta and Vasa Praevia. | Hitachi |
The Donald MacVicar Brown lecture has been a fixture of the Annual Scientific Meeting since 1996. This keynote lecture commemorates and celebrates the origins of medical ultrasound.

This plenary keynote lecture honours the 1958 publication of the Ian Donald, John MacVicar and Tom Brown paper in the British journal ‘The Lancet’. Their paper – ‘Investigation of Abdominal Masses by Pulsed Ultrasound’ is credited with transforming maternity care. The lecture is delivered by an invited speaker, recognised by BMUS for their inspirational work and contribution to medical ultrasound.

This year the lecture is delivered by Professor Paul S. Sidhu, and is entitled ‘Paediatric Contrast Enhanced Ultrasound - A ‘No Brainer’?’

Paul Sidhu is Professor of Imaging Sciences at King’s College London and a Consultant Radiologist in the Department of Radiology at King’s College Hospital.

He received his medical degree from St. Mary’s Hospital Medical School – now part of Imperial College – in 1982, with honours. He completed his housemanship at St. Mary’s Hospital on the professorial medical unit, before completing senior house positions at the Brompton Hospital, Hammersmith Hospital, Hospital for Tropical Diseases and Guy’s Hospital.

He spent one year as a registrar in medicine at Guy’s Hospital, and a year as a lecturer in the University of Malaya, Kuala Lumpur, before returning to radiology training at the Hammersmith Hospital and King’s College Hospital. He was appointed a consultant radiologist at King’s College Hospital in 1996, taking on a dual role in both ultrasound and interventional radiology.

His research has focused on ultrasound and interventional radiology, and he has published extensively on many aspects of ultrasound, particularly in relation to male health and liver transplantation. He has notably pioneered the introduction of contrast-enhanced ultrasound (CEUS) in the United Kingdom in 1996 and is recognised as an authority in the application CEUS in clinical practice. His current research interests include the application of CEUS to the testis, radiation dose reduction in children and non-invasive ultrasound in the assessment of liver disease.

He is currently the editor of the European Journal of Ultrasound and was deputy editor of the British Journal of Radiology. He is past-president of the British Medical Ultrasound Society and the past-president of the section of radiology of the Royal Society of Medicine. He is president of the European Federation of Societies in Ultrasound in Medicine and Biology. He is an honorary fellow of the American Institute of Ultrasound, Korean Ultrasound Society and the Romanian Ultrasound Society and a Fellow of CIRSE.

Professor Sidhu is the editor of five books and has published over 275 scientific articles, 60 book chapters and has organised numerous teaching courses predominantly related to ultrasound imaging. He is a renowned teacher, involved with the ESR, ESGAR, ESUR and EFSUMB teaching courses, and awarded the best teacher accolade for ESOR in 2013. The renowned teaching at King’s College Hospital attracts the largest number of young ESOR scholars each year. He is an active lecturer and has given over 500 presentations at national and international meetings, and invited to deliver a number of plenary lectures.

Professor Sidhu will deliver his talk ‘Paediatric Contrast Enhanced Ultrasound - A ‘No Brainer’?’ on Day 1, Tuesday 4th December at 16.00 in Plenary 1, The Members Suite on the first floor of The Pavilion.
Nonlinear effects in modern diagnostic ultrasound imaging equipment with high working frequencies, Ehsan Jafarzadeh¹, Mohammad Hossein Amini², Anthony N. Sinclair¹, ¹Mechanical Engineering, University of Toronto, ²Acoustics FujiFilm VisualSonics Inc.

Ehsan Jafarzadeh is a researcher who has been pursuing his Ph.D degree in mechanical engineering at University of Toronto, Canada, since 2016. His area of expertise includes ultrasonic wave propagation, diagnostic safety standards, numerical modeling, and non-linear acoustic. He is currently working on non-linear wave propagation in high frequency diagnostic ultrasound, in collaboration with FUJIFILM VisualSonics Inc. This company designs and manufactures ultra-high frequency imaging systems for both research and clinical use. He recently published a review paper on nonlinear effects and safety standards in the journal of "ultrasound in medicine and biology".

Nicolas Ellerby

The quality of ultrasound training for 1st year Radiology trainees and the impact on the ultrasound department, Nicolas Ellerby¹, Samantha Mcneill², Sumita Chawla¹, Jolanta Webb², ¹Mersey School of Radiology, ²Aintree University Hospital

I am a 2nd year Radiology Registrar rotating through the hospitals within the Mersey deanery. I graduated from Keele University in 2015 and went on to complete my foundation years at the Royal Liverpool University hospital before entering into Radiology training.

Sonography is a field of particular research and educational interest, in which, I hope to learn about and become competent in new and innovative techniques in ultrasound.
Nour Alsafi

UltrasoundEd, Nour Alsafi1, Ali Alsafi2, 1Radiology, The Hillingdon Hospital NHS Trust, 2Radiology Imperial College Healthcare NHS Trust

Nour is a sonographer at The Hillingdon NHS hospitals foundation trust with an interest in abdominal and gynaecology imaging. She is currently pursing her masters degree at City university of London. Nour is fascinated by the role social media increasingly plays in medical education and specifically aims to make ultrasound education on social media easily accessible by promoting the use of the hashtag: #UltrasoundEd.

Rute Santos

Vastus lateralis’ stiffness: A supersonic shear wave elastography study, Rute Santos1, Paulo Armada da Silva2, 1Medical Imaging and Radiotherapy Department; Coimbra Health School; Polytechnic Institute of Coimbra, Portugal, 2Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Portugal

Prof. Dr. Rute Santos obtained a Bachelor Hons. in Radiography, Master in Health Education and a PhD in Human Motricity - Biomechanics specialty. Actually decided also to obtain a Graduate Certificate in Obstetric Ultrasound course in University College Dublin. Working as sonographer since 2006. Actually she is Professor of Medical Imaging and Radiotherapy Department, Coimbra Health School, Polytechnic Institute of Coimbra, since 2008. Board member of the Portuguese Radiographers Society (ATARP). Identified as an Ultrasound Expert by European Federation of Radiographer Societies (EFRS). Her research interest areas are focused in ultrasound: musculoskeletal, fascia tissue, breast, obstetric, sports, elastography, aging. She is author and co-author of a large number of scientific oral communications, conference abstracts and papers in this field.

Sarah Mason

The Stacked-Ellipse algorithm: A novel 3D uterine segmentation tool for enabling adaptive radiotherapy for cervical cancer, Sarah Mason1, Ingrid White2, Mariwan Baker3, Claus Behrens2, Susan Lalondrelle2, Jeffrey C. Bamber1, 1Institute of Cancer Research, 2Royal Marsden NHS Foundation Trust, 3Department of Oncology Herlev Hospital

Sarah received her BSc in Bioengineering from Rice University in 2013. She has recently completed her PhD in ultrasound-guided radiotherapy for cervical cancer at the Institute of Cancer Research under the supervision of Dr Emma Harris and Professor Jeff Bamber. She is now continuing to investigate novel approaches for using ultrasound to improve radiotherapy treatment as a postdoctoral researcher at the Institute of Cancer Research.

This Session takes place on Day 1 – Tuesday 4th December 13.45 – 15.00 in Plenary 3 – Lancaster Suite
SCIENTIFIC PROGRAMME 2018

TUESDAY 4TH DECEMBER
WEDNESDAY 5TH DECEMBER
THURSDAY 6TH DECEMBER
AT A GLANCE DAY ONE
Tuesday 4th December

Session Start Times

<table>
<thead>
<tr>
<th>Time</th>
<th>Lecture/Session</th>
<th>Practical Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.15</td>
<td>President's Welcome</td>
<td></td>
</tr>
<tr>
<td>09.30</td>
<td>Gynaecology 1</td>
<td>Student Session 1</td>
</tr>
<tr>
<td>10.45</td>
<td></td>
<td>REFRESHMENT BREAK</td>
</tr>
<tr>
<td>11.15</td>
<td>Gynaecology 2</td>
<td>Student Session 2</td>
</tr>
<tr>
<td>12.45</td>
<td></td>
<td>LUNCH</td>
</tr>
<tr>
<td>13.45</td>
<td>Gynaecology 3</td>
<td>Student Session 3</td>
</tr>
<tr>
<td>15.30</td>
<td></td>
<td>REFRESHMENT BREAK</td>
</tr>
<tr>
<td>16.00</td>
<td>Donald MacVicar Brown Lecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professor Paul Sidhu Paediatric Contrast Enhanced Ultrasound - A 'No Brainer'?</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>END OF DAY 1</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>Welcome Reception – Exhibition Hall</td>
<td></td>
</tr>
</tbody>
</table>
OPENING AND PRESIDENTIAL ADDRESS

09.15 Dr Simon Freeman, BMUS President

GYNAECOLOGY 1

09.30 – 10.45 Chairs – Miss Alison Smith, Guys and St Thomas NHS Foundation Trust, Mr Ahmad Sayasneh, Guys and St Thomas NHS Foundation Trust

This session aims to:

To appreciate the importance of adnexal mass ultrasound characterisation in management of women.

Highlight the ultrasound features which influence clinical management of conditions such as endometriosis, adenomyosis and acute pelvic disease.

The impact of endometrial and uterine pathology on fertility.

Early pregnancy session on PULs and communicating adverse findings.

09.30 Characterisation and diagnosis of adnexal masses using IOTA terminology, Dr Chiara Landolfo, Queen Charlotte and Chelsea Hospital, Imperial College

10.00 Roundtable discussion using six submitted case studies, Dr Chiara Landolfo, Queen Charlotte and Chelsea Hospital, Imperial College, Mr Ahmad Sayasneh, Guys and St Thomas NHS Foundation Trust, Miss Alison Smith, Guys and St Thomas NHS Foundation Trust

10.35 Ultrasound features of immature teratoma: Ultrasound features case series and review of literature, Salwa Abdullahi Idle, Jackie A. Ross, Early Pregnancy and Acute Gynaecology, Kings College Hospital (Proffered Paper)

GYNAECOLOGY 2

11.15 – 12.45 Chairs – Miss Jude Hamilton, Guys and St Thomas NHS Foundation Trust, Dr Trish Chudleigh, The Rosie Hospital, Cambridge University Hospitals Trust and University of Hertfordshire

11.15 The role of ultrasound in acute gynaecology, Miss Jude Hamilton, Guys and St Thomas NHS Foundation Trust

11.45 Uterine anomalies – how to classify and how do they impact on fertility, Mr Lukasz Polanski Jayaprakasan, Royal Derby Hospital

12.15 Endometriosis and adenomyosis, Dr Elizabeth Bean, University College Hospital London

A structured approach for the diagnosis of endometriosis and adenomyosis on pelvic ultrasound.

• What symptoms to discuss and document?

• Why is it important to have a structured approach?

• What can we see?
DAY ONE
Tuesday 4th December

Plenary 1 - Members Suite

- How should we measure it?
- How should we report it?
- What does it mean for the patient?

GYNAECOLOGY 3

13.45 – 15.30
Chairs – Dr Trish Chudleigh, The Rosie Hospital, Cambridge University Hospitals Trust and University of Hertfordshire, Mrs Rachel Small, Heart of England NHS Foundation Trust

13.45
No gestation sac seen – what next?, Miss Alison Smith, Guys and St Thomas NHS Foundation Trust

The introduction of early pregnancy units and the anxiety that women experience in early pregnancy units means increasingly women present very early in their pregnancy. It is known that the severity of presenting symptoms do not always correlate to adverse outcomes i.e. miscarriage and ectopic pregnancy.

Sonographers are often scanning women at their first presentation to a unit with a limited history, no serum biochemistry result or previous reports. In cases where there is no definite or clear gestation sac it can be difficult to know how to interpret the findings, when and if to rescan and when and if hCG levels are required.

This presentation will discuss what features may and/or should be seen, how to interpret the findings of an inconclusive scan and consider the evidence available to support this.

14.10
Clinical management of pregnancy – what do the hCG and progesterone levels mean, Dr Cat Magee, Guys and St Thomas NHS Foundation Trust

14.35
“I am afraid it is not good news” – discussing the findings in early pregnancy, Mrs Rachel Small, Heart of England NHS Foundation Trust

15.00
Review of the outcomes of pregnancies of unknown location (PUL) in a District General Hospital, Rita Philips1, Tracey Blacker2, 1Health and Applied Science, University of the West of England, 2Radiology Royal United Hospital Trust, Bath (Proffered Paper)

15.10
Case study: C-section scar sausage, Alison McGuinness, Ultrasound, Mid Yorkshire Hospitals NHS Trust (Proffered Paper)

15.15
Case report: A presentation of post menopausal pyometra, Sandra Hopkins1,2, Clodagh Curran2, Mary Moran1, Kevin Cronin1, 1School of Radiography University College Dublin, 2Our Lady of Lourdes Hospital Drogheda (Proffered Paper)
DONALD MACVICAR BROWN KEYNOTE LECTURE

16.00 – 17.00

Chairs – Dr Simon Freeman, University Hospitals Plymouth NHS Trust, Derriford Hospital, Mr Gerry Johnson Tameside and Glossop Integrated Care NHS Foundation Trust

Contrast-enhanced ultrasound has been in clinical practice for a number of years, primarily used in adults to characterise liver focal abnormalities. The agent is licensed in a limited number of areas, and until recently, and only in the USA, has not been licensed for use in children. The granting of a license in the USA was a surprise, as most of the clinical work and research has occurred in Europe. Ultrasound is the ultimate imaging method in the child and should be used extensively and to the best of its ability. Addition of microbubble contrast aids the ability to arrive at a confident diagnosis and prevent further imaging with the risk of morbidity.

The Donald McVicar Brown lecture this year will chart a personal and single institution’s journey through the development and clinical use in this pioneering field and demonstrate how perseverance and tenacity in deploying a new technique for patient benefit has benefits for all.

16.00

Paediatric Contrast Enhanced Ultrasound - A 'No Brainer'? , Professor Paul Sidhu, Kings College Hospital, London

17.00 Welcome Drinks Reception in Exhibition Hall
HEAD AND NECK 1

09.30 – 10.45 Chairs – Mrs Catherine Kirkpatrick, United Lincolnshire Hospitals Trust, Prof Rhodri Evans, Swansea University

09.30 The forgotten gland – Parathyroid, Prof Rhodri Evans, Swansea University

This talk will include a revision of the required anatomy and physiology that is needed in order to understand how to image patients with suspected hyperparathyroidism. The two key components of an imaging pathway are Sestamibi scintigraphy and ultrasound. The presentation will highlight the strengths and weaknesses of both techniques and how they can be combined to try and identify a parathyroid adenoma. In particular, key tips to increase the sensitivity and specificity of ultrasound assessment will be highlighted.

A series of cases will be presented, which should allow the delegate to develop an appreciation of the nuances of imaging when searching for the potentially elusive parathyroid adenoma.

10.00 Scanning the paediatric head and neck, Prof Lol Berman, Addenbrookes Hospital

10.35 Metastatic parotid and thyroid masses from renal cell carcinoma, Catherine Kirkpatrick, United Lincolnshire Hospitals Trust (Proffered Paper)

HEAD AND NECK 2

11.15 – 12.45 Chairs – Mrs Catherine Kirkpatrick, United Lincolnshire Hospitals Trust, Prof Rhodri Evans, Swansea University

11.15 Interventional head and neck ultrasound: Pearls and pitfalls, Dr Benjamin Stenberg, Newcastle upon Tyne Hospitals NHS Foundation Trust

Intervention in head and neck ultrasound is ubiquitous. It has been said that you should scan the neck with the probe in one hand and a needle in the other. But which needle? Which technique? And should you be sticking needles in indiscriminately? These questions will be discussed as well as some of the thought processes that should be applied when performing intervention in the head and neck.

11.45 Cross sectional imaging for the sonographer and understanding the TNM classification, Dr Rhian Rhys, Royal Glamorgan Hospital, Llantrisant

The Ultrasound practitioners’ role in the management of the patient with head and neck cancer is increasing in the MDT setting. Ultrasound in combination with FNA is now a mainstay in the staging of patients with a head and neck squamous cell carcinoma. However cross-sectional imaging (be it CT or MRI) is the primary modality for assessing the primary tumour; a knowledge of the strengths and weaknesses of all modalities and an understanding of their interaction will strengthen the role of the practitioner in imaging and staging. This talk will highlight the interaction between the modalities and highlight the limitations and strengths of the three core modalities i.e. Ultrasound, CT and MRI.

The latest TNM classification will require changes in practice in order to improve the management of patients with head and neck cancer. The role of Ultrasound and Ultrasound guided core biopsy in the new pathway will be discussed and how this will need to be incorporated into the new TNM staging classification.
Head and neck pathology beyond the thyroid – including the weird and wonderful!, Dr Steve Colley, University Hospital Birmingham NHS Foundation Trust

PROFESSIONAL ISSUES – CHANGING LANDSCAPE OF SONOGRAPHIC EDUCATION

13.45 – 15.30 Chairs – Mrs Pamela Parker Hull and East Yorkshire Hospitals NHS Trust, Mr Gerry Johnson, Tameside and Glossop Integrated Care NHS Foundation Trust

13.45 The role of Health Education England in career development for Allied Health Professionals, Mrs Beverley Harden, Health Education England

14.10 The profession of sonography, Mrs Pamela Parker Hull and East Yorkshire Hospitals NHS Trust

14.35 Preceptorship in practice, Helen Brown, Birmingham City University (Proffered Paper)

14.45 Training capacity – challenges and solutions, Miss Gill Harrison, Society and College of Radiographers, City University of London

The demand for ultrasound, along with other imaging investigations is increasing year on year (NHS England 2014), requiring an increasing number of ultrasound practitioners to provide the service. This demand, coupled with sonographer shortages (CfWI 2017), is putting a strain on clinical departments. It is clear that change is needed to facilitate good quality clinical education for sonographers and other health care professionals who need to learn the art of ultrasound scanning as part of their clinical role. Health Education England (HEE) are working with key stakeholders, including clinical staff, educational institutions, the British Medical Ultrasound Society (BMUS), the Society and College of Radiographers (SCoR), the Royal College of Radiologists (RCR) and the Chartered Society of Physiotherapy (CSP) to review current clinical educational models and consider innovations to help resolve some of the current challenges.

During the presentation some of the current challenges will be discussed, along with findings from the HEE sonographer training group (STG) survey of clinical managers and discussions with education providers. A range of innovative solutions will be introduced and an update on the latest STG developments will be shared.

References:

15.05 A consortium in practice – A view from CASE, Mr Simon Richards, University of Teesside
DAY ONE
Tuesday 4th December

Plenary 3 - Lancaster Suite

VASCULAR - ANEURYSMAL AND DISEASE 1

09.30 – 10.45
Chairs – Mrs Emma Waldegrave, Lewisham and Greenwich NHS Trust, Society of Vascular Technology, Dr Kamran Modaresi, Northwick Park Hospital

09.30
Multi-parametric assessment of the pre and post EVAR aorta, Dr Benjamin Stenberg, Newcastle upon Tyne Hospitals NHS Trust

With concerns over re-intervention, radiation dose and surveillance frequency, post-EVAR imaging is a changing landscape with the trend away from CT toward ultrasound. We can offer so much more than a single plane measurement with the application of 3D/volumetric imaging, high-resolution/sensitivity Doppler techniques and, of course, contrast-enhanced ultrasound. This lecture discusses these technologies and how they can be applied to the abdominal vasculature and in particular the post-EVAR aorta and iliac vessels.

10.00
Popliteal Aneurysm prevalence in a AAA surveillance population, Ms Caroline Maslen, University of Leicester

10.20
Interval Guidance for Iliac artery, Ms Aliya Dhanji-Lakha, Barts Health NHS Trust

VASCULAR - ANEURYSMAL AND DISEASE 2

11.15 – 12.45
Chairs – Mrs Emma Waldegrave, Lewisham and Greenwich NHS Trust, Society of Vascular Technology Mr Ben Freedman, Kings College Hospital.

11.15
An update: Female aneurysm screening trail (FAST), Ms Caroline Maslen, University of Leicester

11.25
How and when to CEUS for EVAR assessment of endo leak, Mr Steven Rogers, University Hospital of South Manchester

Contrast-Enhanced ultrasound (CEUS) is a sensitive and specific modality for complications following Endo-Vascular Aneurysm Repair (EVAR). Due to the many different devices used for EVAR, each with their own characteristics, the job of the vascular scientist/sonographer can be challenging.

This talk will discuss tips and tricks that will help those performing CEUS scans. We will cover the basics while discussing some complex cases.

Following this talk delegates should feel better placed in understanding this exciting advancement of vascular ultrasound, given the new updated NICE guideline, and more confident in reporting of EVAR scans.

12.15
Outcomes after deep vein thrombosis: resolution, recurrence, reflux and pts, Michelle Bonfield1, Fiona Crampo2, Jon Pollock2, 1Vascular Science University Hospitals Bristol NHS Foundation Trust, 2Faculty of Health and Applied Sciences University of the West of England (Proffered Paper)

12.25
Learning from experience and sharing knowledge: Doppler training for nurses to improve pedal pulse assessments, Kate Houghton1, Jonathan Greenwood2, Teresa Robinson1, 1Vascular Science, Bristol Royal Infirmary 2Coronary Care Unit, Bristol Royal Infirmary (Proffered Paper)
TUESDAY

DAY ONE
Tuesday 4th December

Plenary 3 - Lancaster Suite

YOUNG INVESTIGATOR

13.45 – 15.30 Chairs – Dr Carmel Moran, University of Edinburgh, Mrs Terry Humphrey, Leeds Teaching Hospitals NHS Trust

13.45 Nonlinear effects in modern diagnostic ultrasound imaging equipment with high working frequencies, Ehsan Jafarzadeh1, Mohammad Hossein Amini2, Anthony N. Sinclair3, 1Mechanical Engineering University of Toronto, 2Acoustics FujiFilm VisualSonics Inc.

14.00 The quality of ultrasound training for 1st year Radiology trainees and the impact on the Ultrasound department, Nicolas Ellerby, Samantha Mcneill, Sumita Chawla, Jolanta Webb, Aintree University Hospital

14.15 UltrasoundEd, Nour Alsafi1, Ali Alsafi2, 1Radiology The Hillingdon Hospital NHS Trust, 2Radiology Imperial College Healthcare NHS Trust

14.30 Vastus lateralis’ stiffness: A supersonic shear wave elastography study, Rute Santos1, Paulo Armada da Silva2, 1Coimbra Health School, Polytechnic Institute of Coimbra, Portugal, 2Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Portugal

14.45 The Stacked-Ellipse algorithm: a novel 3D uterine segmentation tool for enabling adaptive radiotherapy for cervical cancer, Sarah Mason1, Ingrid White2, Mariwan Baker3, Claus Behrens3, Susan Lalondrelle2, Jeffrey C. Bamber1, Emma J. Harris1, 1Institute of Cancer Research, 2Royal Marsden NHS Foundation Trust, 3Department of Oncology Herlev Hospital, Denmark

Education On The Stand – Exhibition Hall

13.15 Shear wave elastography, - Philips, (Stand 13)

15.30 Moving from 2D to 3D ultrasound in radiology, - Philips, (Stand 13)
With Dr Ben Stenberg, using xMatrix technology
Practical Workshop Session - 3rd Floor Mezzanine Area

PERFECTING LIVER AND DOPPLER TECHNIQUE

11.15 – 12.45

Led by – Mr Gerry Johnson Tameside and Glossop Integrated Care NHS Foundation Trust, Mrs Pamela Parker Hull and East Yorkshire Hospitals NHS Trust

The ability to undertake ultrasound of the liver and doppler techniques is an invaluable skill for the general ultrasound practitioner. This practical session is intended to give the underpinning knowledge of segmental liver anatomy, use of liver doppler techniques, and skills for proficiency in liver ultrasound and the use of liver doppler techniques. It is hoped that delegates will feel more confident to try out these techniques in their own institutions after attendance at this workshop.

During the session delegates will have x2 lectures on liver segmental anatomy and liver doppler, with various clinical stations perfecting the skills attained.

FACULTY

Mr Colin Griffin, Royal Liverpool University Hospital
Ms Therese Herlihy, University College Dublin
Prof Adrian Lim, Imperial College Healthcare NHS Trust
Dr Oliver Byass, Hull and East Yorkshire Hospital Trust
Dr Peter Cantin, University Hospitals Plymouth NHS Trust, Derriford Hospital
Mr Damian Mullen, Christie NHS Foundation Trust

CAROTID MASTER CLASS

13.45 – 15.30

Led by – Mrs Emma Waldegrave, Lewisham and Greenwich NHS Trust, Society of Vascular Technology

The session will focus on the more difficult pathologies that maybe encountered when scanning the carotid arteries. These include dissection, near occlusion trickle flow and non-atherosclerotic disease.

Combining hands-on practical and live demonstrations with short lectures, the aims of this session are to improve the optimisation of machine controls and build confidence in assessing and reporting difficult cases.

FACULTY

Mr Ben Freedman, Kings College Hospital
Mr Jordan Marasigan, Kings College Hospital
Ms Sarah Cleal, Central Manchester University Hospitals NHS Foundation Trust
Mr Sajad Ahmed, The Manchester Vein Clinic
Ms Caroline Maslen, University of Leicester
Ms Alyiah Dhanji-Lakha, Barts Health NHS Trust
Dr Kamran Modaresi, Northwick Park Hospital
Miss Borsha Sarker, Leeds Biomedical Research Centre
Satellite Session - Brown Shipley Club Suite

STUDENT SESSION 1

09.30 – 10.45

Chairs – Mrs Helen Brown, Birmingham City University, Miss Rachel Baker, Birmingham City University

- **09.30**
 - Quality vs quantity: What makes a good clinical training experience?, Mrs Famida Sadek, Mrs Gill Newcombe, Health Education Wessex, Southampton

- **9.50**
 - Case report: Development of direct entry undergraduate education for sonographers: A clinical perspective, Mrs Cheryl Davies, Gloucester Hospital NHS Foundation Trust

- **10.10**
 - Undergraduate student clinical experience, Harriet Rzeskiewicz, Faculty of Health Birmingham City University (Proffered paper)

- **10.20**
 - Sonographer education pathways an Australian perspective, Ms Jodie Long, Australasian Sonographers Association

- **10.30**
 - Student membership of BMUS, Mrs Pamela Parker, Hull and East Yorkshire Hospitals Trust

STUDENT SESSION 2

11.15 – 12.45

Chairs – Mrs Helen Brown, Birmingham City University, Mrs Catriona Hynes, Sheffield Hallam University

- **11.15**
 - Research: You can do it too! Mrs Catriona Hynes, Sheffield Hallam University

- **11.40**
 - Qualified healthcare practitioner promoted to student: An interpretive phenomenological analysis of the impact of the job characteristics on motivation for the student sonographer, Charlie Rogers, Royal Bournemouth Hospital (Proffered paper)

- **11.50**
 - Ultrasound guided procedures: What are the barriers surrounding interventional practice for sonographers, Hamdi Mohamed, Chelsea and Westminster Hospital (Proffered paper)

- **12.00**
 - Preceptorship – whats in it for me? Mrs Helen Brown, Birmingham City University

- **12.10**
 - How to write for publication, TBC

STUDENT SESSION 3

13.45 – 15.30

Chairs – Miss Anushka Sumra, Birmingham City University, Mrs Lorraine Walsh, Birmingham Children’s Hospital

- **13.45**
 - The importance of communication for patient care, Ms Jodie Long, Australasian Sonographers Association

- **14.10**
 - Ultrasound educational routes – An overview, Mrs Nicola Davidson, The Alexandra Hospital

- **14.25**
 - The road to consultant sonographer, Mrs Lorraine Walsh, Birmingham Children’s Hospital

- **14.40**
 - Neonatal neurosonography case study of subdural collection, Andrea Kadrou, Birmingham Children’s Hospital Birmingham City University (Proffered paper)
DAY ONE
Tuesday 4th December

Satellite Session - Brown Shipley Club Suite

14.50 Deep vein thrombosis – Always look at the bigger picture, Therese Herlihy, Diagnostic Imaging, School of Medicine University College Dublin (Proffered paper)

15.00 Pyogenic flexor tenosynovitis as a result of a foreign body and the role of ultrasound, Andrea Kadrou, Birmingham Children’s Hospital, Birmingham City University (Proffered paper)

15.10 Metastatic endometrial carcinosarcoma, Clare McFadyen, Ultrasound, The University of Cumbria (Proffered paper)
Together, we make it possible.

Made For life

Working together to understand your needs drives valuable outcomes for you and your patients.

Visit our website to find out more about the versatile ultrasound systems available at Canon Medical Systems:

With Canon Medical, true innovation is made possible.
AT A GLANCE DAY TWO
Wednesday 5th December

<table>
<thead>
<tr>
<th>Session Start Times</th>
<th>LECTURES</th>
<th>PRACTICAL SESSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLENARY 1</td>
<td>PLENARY 2</td>
<td>PLENARY 3</td>
</tr>
<tr>
<td>Members Suite</td>
<td>1864 Suite</td>
<td>Lancaster Suite</td>
</tr>
<tr>
<td>The Pavilion 1st Floor</td>
<td>The Pavilion 2nd Floor</td>
<td>The Pavilion 2nd Floor</td>
</tr>
<tr>
<td>09.00</td>
<td>09.00</td>
<td>09.00</td>
</tr>
<tr>
<td>General Medical 1</td>
<td>MSK Fundaments 1</td>
<td>Professional Issues 2</td>
</tr>
<tr>
<td>10.30</td>
<td>REFRESHMENT BREAK</td>
<td>10.30 – 10.50 Education on the Stand – Philips</td>
</tr>
<tr>
<td>11.00</td>
<td>11.00</td>
<td>11.00</td>
</tr>
<tr>
<td>General Medical 2</td>
<td>MSK Fundaments 2</td>
<td>Breast Session</td>
</tr>
<tr>
<td>12.30</td>
<td>LUNCH</td>
<td>12.45</td>
</tr>
<tr>
<td>13.00</td>
<td>13.00</td>
<td>13.00</td>
</tr>
<tr>
<td>General Medical 3</td>
<td>Professional Issues 3</td>
<td>Veterinary Session</td>
</tr>
<tr>
<td>13.30</td>
<td>13.00 – 13.30 Education on the Stand - Siemens Healthineers</td>
<td>13.00 – 13.30 Education on the Stand - Siemens Healthineers</td>
</tr>
<tr>
<td>15.00</td>
<td>REFRESHMENT BREAK</td>
<td>15.00 – 15.20 : Education on the Stand – Philips</td>
</tr>
<tr>
<td>General Medical 4</td>
<td>Professional Issues 4</td>
<td>Veterinary Session</td>
</tr>
<tr>
<td>15.30</td>
<td>15.00</td>
<td>15.30</td>
</tr>
<tr>
<td>17.00</td>
<td>END OF DAY 2</td>
<td>17.00</td>
</tr>
<tr>
<td>19.00</td>
<td>Gala Dinner and Awards Ceremony</td>
<td>19.00</td>
</tr>
</tbody>
</table>
GENERAL MEDICAL AND PAEDIATRICS – ACUTE AND EMERGENCY ULTRASOUND

09.00 – 10.30 Chairs – Dr Peter Cantin, University Hospital Plymouth NHS Trust, Derriford Hospital, Mrs Terry Humphrey, Leeds Teaching Hospitals NHS Trust

This session is intended to give an overview into emergency ultrasound. It will include use of ultrasound in the abdomen, pelvis, and scrotum. The session will include acute ultrasound in the paediatric patient.

This session is aimed at those practitioners who undertake ultrasound in the acute surgical and medical setting and those required to undertake acute ultrasound on-call.

09.00 Acute pelvic pain, Dr Mike Weston, St James’s University Hospital

A review of the ultrasound appearances of gynaecological causes of acute pelvic pain:

1. Normal ovulation pain
2. Ovarian cyst accident and haemorrhage
3. Ectopic pregnancy
4. Ovarian and adnexal torsion
5. Fibroid degeneration
6. Sepsis

09.20 Acute scrotal ultrasound, Dr Jane Belfield, Royal Liverpool and Broadgreen University Hospitals NHS Trust

09.40 Acute ultrasound in the paediatric patient, Dr Jude Foster, University Hospital Plymouth NHS Trust, Derriford Hospital

10.00 Acute biliary ultrasound, Dr Tim Hoare, Newcastle upon Tyne Hospitals NHS Trust

10.20 Ultrasound diagnosis of possible scrotal filariasis: Mobile mega sperm adifferential, Rubabb Mahmood, Clifford Amadi, Ultrasound Queens Medical Centre, Nottingham (Proffered Paper)

GENERAL MEDICAL AND PAEDIATRICS – HEPATOBILIARY ULTRASOUND

11.00 – 12.30 Chairs – Dr Simon Freeman, University Hospital Plymouth NHS Trust, Derriford Hospital, Dr Peter Cantin, University Hospital Plymouth NHS Trust, Derriford Hospital

This session is intended to provide an overview of ultrasound of the liver in the adult and child and emphasise some of the diagnostic dilemmas that can arise.

The session will comprise keynote speakers followed by a series of short cases reviews of ultrasound in the liver, each chosen to highlight a specific learning outcome and provide a clear take-home message.
11.00 Keynote: Are we ready to incorporate Shearwave Elastography in routine standard of care ultrasound assessments?, Prof Paul Sidhu, Kings College Hospital, London

Liver fibrosis and cirrhosis from many causes is an important cause of long term morbidity and mortality. Most cases are a consequence of chronic viral disease (Hepatitis B and C) with alcoholic liver disease an important etiological factor. The degree of liver fibrosis, and the presence of established cirrhosis confer different management strategies, with imaging playing an important role in the non-invasive assessment of patients with chronic liver disease. Fibrosis grading traditionally performed using the Metavir or Ishak scoring system is essentially a histological grading system. Ultimately the possibility to avoid a liver biopsy is the aim, if a non-invasive technique can stage the grade of fibrosis, establishing correct patient management. Liver ultrasound elastography is a developing technique that offers this possibility, with varying methods of assessment ranging from strain methods and shear wave methods. These techniques will be explained, the status of the current standing of the techniques will be summarized, and the level of technology offered by different machines will be reviewed. An overall summary of the current status and the implications for clinical practice will be discussed.

11.25 Neonatal jaundice, Mrs Terry Humphrey, Leeds Teaching Hospitals NHS Trust

Jaundice which persists beyond 14 days of age should be investigated.

In this talk we will discuss the importance of early diagnosis or exclusion of Biliary atresia, reviewing the ultrasound appearances of this and other causes of neonatal jaundice.

11.40 Microflow imaging for liver lesions, Prof Adrian Lim, Imperial College Healthcare NHS Trust

11.55 GB polyps/GB cancer, Dr James Pilcher, St Georges Hospital, London

12.10 The use of ultrasound to support palliative care in a hospice setting, Jo Eastman, Saint Francis Hospice (Proffered Paper)

12.20 The multiparametric sonographer, Andrew Hunter, Pamela Parker, Oliver Byass, Ultrasound, Hull and East Yorkshire Hospitals NHS Trust (Proffered Paper)

GENERAL MEDICAL AND PAEDIATRICS - THE RENAL TRACT

13.30 – 15.00 Chairs – Prof Adrian Lim, Imperial College Healthcare NHS Trust, Mr Gerry Johnson, Tameside Hospital and Glossop Integrated Care NHS Foundation Trust

This session is intended to provide an overview of ultrasound of the renal tract in the adult and child and emphasise some of the diagnostic dilemmas that can arise.

The session will comprise keynote speakers followed by a series of short cases reviews of ultrasound in the renal tract, each chosen to highlight a specific learning outcome and provide a clear take-home message.

13.30 Keynote: Congenital anomalies of the urinary tract in children, Dr William Ramsden, Leeds Children’s Hospital

This talk is aimed at anyone undertaking paediatric ultrasound as part of their role, as congenital anomalies of the urinary tract may often present non specifically (e.g. as urinary tract infections) prior to their diagnosis by imaging.
It will cover both common and rare anomalies in children, emphasising those which are clinically significant. Imaging strategies for these anomalies and their complications will be discussed, with particular reference to the role of sonography. Other imaging modalities will also be included, with guidance for their appropriate use following the initial evaluation of the child with ultrasound.

The talk will contain practical suggestions regarding identification and imaging follow-up of these conditions, emphasising key points to aid day-to-day practice.

13.55 CEUS for renal lesions – a waste of time?, Dr Chris Harvey, Hammersmith Hospital

14.10 Ultrasound in urinary obstruction, Dr Simon Freeman, University Hospital Plymouth NHS Trust, Derriford Hospital

14.25 Management of renal lesions: The renal MDT, Dr Mike Weston, St James’s University Hospital

A discussion of the issues encountered in a renal cancer MDT

- Confirmation of the nature of the lesion
- The use of biopsy
- What to do with small incidental renal masses
- Which treatment to choose for renal cell carcinoma
- Surveillance and detection of metastatic disease

14.40 Early post-operative ultrasound for renal transplant, Karis McFeely1, Thomas Davies1, Matthew Murphy1, Catherine Gutteridge2, 1Penninsula Radiology Academy, 2 University Hospital Plymouth NHS Trust, Derriford Hospital (Proffered Paper)

14.50 Sonographic appearance of mid and long term renal transplant complications, Thomas Davies1, Karis McFeely1, Matthew Murphy1, Catherine Gutteridge2, 1Penninsula Radiology Academy, 2University Hospital Plymouth NHS Trust, Derriford Hospital (Proffered Paper)

GENERAL MEDICAL AND PAEDIATRICS – PANCREAS, SPLEEN AND MISCELLANEOUS PARTS

15.30 – 17.00 Chairs – Prof Adrian Lim, Imperial College Healthcare NHS Trust, Mrs Terry Humphrey, Leeds Teaching Hospitals NHS Trust

This session is intended to provide an overview of ultrasound of the pancreas, spleen and other, miscellaneous parts in the adult and child. It will emphasise some of the diagnostic dilemmas that can arise.

The session will comprise keynote speakers followed by a series of short cases reviews of ultrasound in these areas, each chosen to highlight a specific learning outcome and provide a clear take-home message.

15.30 Keynote: The spleen – an under imaged organ?, Dr Chris Harvey, Hammersmith Hospital

15.55 Ultrasound of the adrenal glands in children, Dr Jeanette Kraft, Leeds Children’s Hospital

The aim of this talk is to review the sonographic imaging appearances of common conditions affecting the adrenal gland in children.
The imaging features of a normal adrenal gland and normal variants in neonates and older children are presented. The use of ultrasound to diagnose and follow up conditions such as congenital adrenal hyperplasia, adrenal haemorrhage in the neonate and post traumatic as well as neoplastic conditions including neuroblastoma will be discussed.

16.10 **Benign pancreatic lesions – Can ultrasound be useful?**, Dr Tim Hoare, Newcastle upon Tyne Hospitals

16.25 **Ultrasound in the retroperitoneum**, Dr James Pilcher, St Georges Hospital, London

16.40 **Splenic artery pseudoaneurysm, a rare complication of pancreatitis: Case report**, Anne Hurleston, Ultrasound, Stockport NHS Foundation Trust (Proffered Paper)

Plenary 2 - 1864 Suite

MSK FUNDAMENTALS 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00</td>
<td>Imaging the shoulder with hands on demonstration, Mrs Sophie Cochran, Pilgrim Hospital, Boston</td>
</tr>
<tr>
<td>09.30</td>
<td>The role of ultrasound in the diagnosis and management of shoulder disorders – A surgeon’s perspective, Mr Steve Bale, Wrightington Hospital</td>
</tr>
<tr>
<td>10.00</td>
<td>The role of ultrasound in the diagnosis and management of soft tissue lumps and bumps, Miss Katie Simm, Whiston Hospital</td>
</tr>
</tbody>
</table>

MSK FUNDAMENTALS 2

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.00</td>
<td>Chairs – Mrs Lorelei Waring, University of Cumbria, Mrs Kirstie Godson, Mid Yorkshire Hospitals NHS Trust</td>
</tr>
</tbody>
</table>

For many practitioners practicing MSK evaluation ultrasound has become the main investigative imaging tool, due to it being portable, safe, low cost, widely available and having undergone recent technological improvements. This session is aimed at practitioners new to MSK or with an interest in this field.

The session will offer an introduction to some of the more commonly encountered examinations that practitioners may come across in a day to day practice.
11.00 **Sonographic evaluation of sciatic nerve damage in a symptomatic patient following pellet shotgun injury**, Gabriel Constantinescu, Min Hui Ho, Raju Ahluwalia, Kings College Hospital NHS Foundation Trust (Proffered Paper)

11.10 **The use of diagnostic ultrasound in rheumatology - rheumatology or radiology**, Mrs Alison Hall, Keele University and Cannock Chase Hospital

 Over the past decade, musculoskeletal ultrasound has played an increasingly important role in optimising clinical assessment and monitoring of patients with inflammatory arthritis. The use of Doppler provides an accurate and sensitive assessment of inflammatory activity especially in the small joints of the hands and feet. Ultrasound is a valuable tool for needle guidance to aspirate fluid collections for diagnostic purposes, and to direct therapeutic injections safely and accurately. These advantages are very useful in the management of inflammatory disease and ultrasound is now a relevant part of current and future rheumatology practice and research.

 In some centres in the UK, rheumatologists and other health care professionals themselves have learned to use ultrasound on their own patients and there has been much discussion about their technical ultrasound ability and training. However, in many centres, patients are referred to Radiology departments for these sometimes lengthy examinations, with expertise assumed in this area. Without significant knowledge of inflammatory diseases and associated ultrasound appearances, these examinations can at least be difficult to interpret and at worst can misdirect clinicians which may cause harm to patients.

 This session aims to give a brief outline of relevant rheumatological conditions and their ultrasound appearances with some hints and tips to aid in diagnosis. This will include what the rheumatologist wants to know from an ultrasound scan to aid the clinical diagnosis of inflammatory arthritis, and what the radiologist or sonographer should know to facilitate this.

11.40 **MSK Training**, Mr Mike Bryant, Lytham Primary Care Centre

 Ultrasound is the first-choice imaging investigation for the evaluation of many musculoskeletal diseases, with practitioners from many different clinical backgrounds practicing in this field. However, securing training into this field can prove difficult especially if you practice outside the radiology background.

 This talk aims to highlight the MSK ultrasound training experience of a physiotherapist, discussing the positives and negatives in respects to the clinical background and how mentorship was secured to aid successfully completion of the course

12.00 **MSK Training**, Mr Adam Sanders, Alliance Medical
PROFESSIONAL ISSUES 3 - AUDIT

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.30</td>
<td>Chairs – Mrs Pamela Parker, Hull and East Yorkshire Hospitals NHS Trust, Dr Peter Cantin, University Hospital Plymouth NHS Trust, Derriford Hospital</td>
</tr>
<tr>
<td>13.30</td>
<td>Peer review – what have we learnt so far, Dr Peter Cantin, University Hospital Plymouth NHS Trust, Derriford Hospital</td>
</tr>
<tr>
<td>13.50</td>
<td>Isle of Wight peer review, Deborah Beare, Diagnostic Imaging Isle of Wight Healthcare NHS Trust (Proffered Paper)</td>
</tr>
<tr>
<td>14.00</td>
<td>Getting the best from your text – hints and tips for reporting, Hazel Edwards, East and North Hertfordshire NHS Trust</td>
</tr>
<tr>
<td></td>
<td>This presentation will define the value of the ultrasound report and its place in medical records. Essential components of the report will be discussed along with pros and cons of using report templates. Referring clinicians want only clear and unambiguous information from ultrasound reports. While it is often not possible to provide an exact diagnosis, reports can still be structured to assist the referrer and influence their decision making. Tips will be offered on how to write accurately and with brevity. Suggestions will also be given on how to avoid jargon and sitting on the fence. Unwise and unhelpful phrases seen in suboptimal reports will be highlighted and balanced with examples of good reporting.</td>
</tr>
<tr>
<td>14.20</td>
<td>Are we doing enough to protect patients, Julie Burnage, JB Imaging Solutions (Proffered Paper)</td>
</tr>
<tr>
<td>14.30</td>
<td>Managing risk and learning from discrepancy, Dr Oliver Byass, Hull and East Yorkshire Hospitals Trust</td>
</tr>
<tr>
<td>14.50</td>
<td>Question and answer session</td>
</tr>
</tbody>
</table>

PROFESSIONAL ISSUES 4 – QUESTION TIME – WHAT HAPPENS NEXT

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.30</td>
<td>Chair – Dr Simon Freeman, University Hospital Plymouth NHS Trust, Derriford Hospital</td>
</tr>
<tr>
<td></td>
<td>Join our very own Question Time chair, Dr Simon Freeman, BMUS president as we visit The Point for a special edition of question time. This week’s panel include a wide and varied group of experts who will give their own views on the hot topics of the day. An enlightening and entertaining session as Teesside goes to head to head with Swansea via input from Hull and Derby. Hot topics are likely to include apprenticeships, education, independent reporting and the emerging ‘college of sonographers.’</td>
</tr>
<tr>
<td></td>
<td>Panel Members:</td>
</tr>
<tr>
<td></td>
<td>Prof, Rhodri Evans, Swansea University</td>
</tr>
<tr>
<td></td>
<td>Mrs Alison McGuinness, Mid Yorkshire Hospitals NHS Trust</td>
</tr>
<tr>
<td></td>
<td>Mr Simon Richards, Teesside University</td>
</tr>
<tr>
<td></td>
<td>Mrs Pamela Parker, Hull and East Yorkshire Hospitals Trust</td>
</tr>
<tr>
<td></td>
<td>Mrs Heather Venables, University of Derby</td>
</tr>
</tbody>
</table>
DAY TWO
Wednesday 5th December

Plenary 3 - Lancaster Suite

PROFESSIONAL ISSUES 2 – WHY AND WHEREFORES OF INTERVENTION

09.00 – 10.30
Chairs – Mrs Catherine Kirkpatrick, United Lincolnshire Hospitals Trust, Prof Rhodri Evans, Swansea University

Ultrasound imaging has long been used a tool to guide intervention; the range of procedures is extensive. More recently there has been an increasing number of non-medics who perform ultrasound guided interventional procedures, and there and many more who could, should or would if the whys and wherefores were explained. The aim of the session is to give up to date hints and tips on providing an interventional service in your practice.

09.00
Intervention for the non-medics; Dotting the I’s and crossing the T’s, Mrs Pamela Parker, Hull and East Yorkshire Hospitals Trust

09.20
Setting up an interventional service – points to consider, Mrs Catherine Kirkpatrick, United Lincolnshire Hospitals Trust

09.40
Basics of histopathology – getting the most from your samples and slides, Dr Stephanie Edwards, Manchester Royal Infirmary

10.05
Needle hints and tips, Prof Rhodri Evans, Swansea University

BREAST FUNDAMENTALS FOR THE GENERAL IMAGER

11.00 – 12.30
Chairs – Dr Keshthra Satchithananda, Kings College Hospital NHS Foundation Trust, Mr Gerry Johnson, Tameside Hospital and Glossop Integrated Care NHS Foundation Trust

The session will cover the essentials of breast imaging including topics that may be referred to a general imaging department such as axillary, male, postoperative and paediatric breast ultrasound.

11.00
Ultrasound features of benign and malignant breast lesions, Dr Rumana Rahim, Kings College Hospital NHS Foundation Trust

11.20
Ultrasound imaging of the axilla, Dr Juliet Morel, Kings College Hospital NHS Foundation Trust

11.40
Ultrasound of breast lesions in the male and paediatric patient, Dr Hema Purushothaman, Charing Cross Hospital, London

12.00
Ultrasound imaging of the post-operative and reconstructed breasts, Dr Sarah McWilliams, St Georges Hospital, London
VETERINARY SESSION 1

13.00 – 15.00 Chairs – Mrs Angie Lloyd-Jones, North West Veterinary Specialists, Ms Abby Caine, Dick White Referrals

These two sessions will cover;

- A range of interesting specialist topics which promote the use of diagnostic ultrasound as necessary adjunct to successful patient management.
- Promote high standards of clinical ultrasound practice and diagnostic confidence by reviewing and discussing speaker-related topics / interesting case studies.
- To re-introduce this highly reputable ultrasound forum to not only the veterinary imaging specialist community but also a wider clinical diagnostic/veterinary ultrasound user.
- Promote and debate the viability of forthcoming ‘BMUS Guidelines on Small Animal Veterinary Ultrasound Practice Standards’
- Discuss how BMUS and the Veterinary Profession can collaborate to develop the veterinary stream at the BMUS Annual Scientific Meeting moving forwards.

13.00 The transition from human to small animal veterinary sonographer, Mrs Gilly White, Small Animal Teaching Hospital, University of Liverpool

The presentation will begin with a brief outline of my 18 year career transition from human sonography to the fascinating world of small animal sonography. Veterinary care structure works in a similar way to human medical care structure. How the sonographers role fits into this care structure will be discussed, along with the equipment used and the scan techniques involved. The legal aspects and insurance implications of working as a self employed or contracted sonographer will be outlined. Followed by images of some interesting cases highlighting the main differences between imaging humans and animals.

13.20 Differentials for abnormal liver, Ms Monika Lobacz, Dick White Referrals

Differential diagnosis divided for focal or multifocal disease: Differentiation of hepatocellular carcinoma with hepatocellular adenoma cannot be done alone with ultrasound, CT contrast is needed. Hepatocellular carcinoma: central (79%), marginal enhancement (93%) in the arterial phase; cyst like lesions (93%), capsule formation (93%) & hypoattenuation in portal (86%) and equilibrium phase (93%). Hepatic adenoma: - diffuse enhancement pattern during the arterial phase 57% which was also found in nodular hyperplasia 60% but never in hepatocellular carcinoma; - contrast retention more frequent then other groups; Nodular hyperplasia: isoattenuation in the equilibrium phase, likely to have capsule structure 20%.

Target lesions were associated with malignancy in 67% instances. However may represent benign nodular hyperplasia, pyogranulomatous hepatitis, cirrhosis, chronic active hepatitis and others. Hematoma: The internal appearance changes as it ages. Acute haemorrhage <24hr old is echogenic; within the 1st week hematoma -> becomes more hypoechoic and better defined, with a mixture of solid and fluid components. Over the next several weeks, the hematoma becomes increasingly less distinct as fluid is resorbed and spaces are filled with granulation tissue. Acute abdomen in case of liver lobe torsion - may mimic hepatic mass, it is hypoechoic or mixed echogenicity, use Doppler – absent or reduced blood flow. Left lateral liver lobe predisposed in large breed dogs.
Diffuse liver diseases: hepatic congestion due to right sided insufficiency such as: 1) Cardiac tamponade causing increased pressure within the CVC => hepatic veins appear dilated, the liver is enlarged and diffusely hypoechoic; 2) Caudal vena cava obstruction. Hepatomegaly due to the endocrine diseases: hyperadrenocorticism, hypothyroidism, diabetes mellitus, hepatitis and due to neoplasia. Linear branching mineral opacities in canine liver may be due to the previous cholangiohepatitis – incidental finding – predisposed CKCS.

Biliary tract diseases: Gallbladder wall thickening: cholecystitis, edema, cystic mucosal hyperplasia, rarely neoplasia.

Gallbladder mucocele suspected rupture - to cut or not to cut? All depends on the clinical presentation of the patient. Clinical signs, although sometimes absent, include abdominal pain, inappetence, fever, vomiting, and icterus. Predisposition with hyperadrenocorticism.

Distention of the intrahepatic biliary tracts indicates biliary obstruction >7days long.

13.50

Congenital portosystemic shunts: An overview from a surgeon’s perspective on what the imager needs to consider, Ms Rachel Burrow, Small Animal Teaching Hospital, University of Liverpool

Portosystemic shunts (PSS) are vascular anomalies that allow portal blood to bypass the liver and join the systemic circulation thus causing hepatic dysfunction. PSS can be congenital or acquired. Congenital PSS generally consist of a single large anomalous vessel, affected patients tend to present as puppies/kittens or young adults. Congenital PSS can broadly be divided into intra and extrahepatic shunts depending on the site of origin of the portosystemic shunt. A small subset of patients are identified with clinical signs and laboratory findings typical of PSS but with no macroscopic PSS identifiable; shunting occurs on a microscopic level termed portal vein hypoplasia/microvascular dysplasia (PVH/MVD). Acquired shunts develop secondary to conditions that cause portal hypertension, and consist of multiple vessels, they are often but not exclusively identified in adult and older dogs. Patient signalment can suggest the type of shunt but the confirmation of the presence of a PSS and anatomical type is made by diagnostic imaging.

Identification of a PSS and subsequent characterisation of the specific type is essential to determine the treatment options and prognosis. Surgery is generally considered the treatment of choice for single congenital PSS but is inappropriate for patients with acquired shunts and PVH/MVD.

Identification and characterisation of the PSS by abdominal ultrasound examination will identify those patients that have a PSS conformation amenable to surgical treatment (by ligation or attenuation) and will potentially reduce the surgical and anaesthesia times by aiding the surgeon, especially if less experienced, in locating the anomalous vessel.

Patients with liver disease, including PSS, often have cystic calculi and identification of their presence numbers and sizes will also allow identification of those patients with calculi that are too large to be voided at urination and/or are of a size that cause urethral obstruction therefore require surgical removal.

14.25

Veterinary musculoskeletal ultrasound, Dr Olivier Taeymans, Dick White Referrals

REFRESHMENT BREAK

15.00 – 15.30
Served in the training room

15.10
10 Minute talk by Mr Gordon Macellan Mb BS FRCA, The Pupscan Project
15.30 – 17.00

Chairs – Mrs Angie Lloyd-Jones, North West Veterinary Specialists, Ms Abby Caine, Dick White Referrals

15.30
There is a nerve, I need to block it. What difference has ultrasonography made in veterinary anaesthesia, Ms Drozdzynska, Dick White Referrals

In the last few years the use of ultrasound increased significantly in the field of Veterinary Anaesthesia.

For many loco-regional anaesthesia techniques, ultrasonography serves as a useful alternative or complementary technique to the use of peripheral nerve stimulator. Due to direct visualisation of targeted nerves it allows for local anaesthetic dose reduction, increased block precision and reduced risk of nerve damage.

Furthermore, ultrasonography allowed to develop completely new group of loco-regional anaesthesia techniques called intrafascial/compartmental bocks. They facilitate predictable anaesthetic spread via use of anatomical fascias. Due to hypoechoic character and superficial location of most fascias these blocks are classified as low-risk and easy to master loco-regional techniques. The serratus plane block designed for thoracic wall procedures and transversus abdominis plane block for abdominal procedures will be presented as an examples.

Finally, ultrasonography is currently used for peripheral nerve/plexuses catheter placement which due to the use of differential block phenomenon, allows for more effective management of acute postoperative pain.

Overall, ultrasonography due to improvement and widening the spectrum of available loco-regional anaesthesia techniques facilitates the way towards opioid-free analgesia in veterinary profession.

16.00
Prevalence and clinical significance of the medullary rim sign identified on ultrasound of feline kidneys, Mrs Amy Ferreira, Small Animal Teaching Hospital, University of Liverpool

16.10
Companion animal ultrasound from a mobile service perspective, Mr Andrew Denning, Imaging Referrals Ltd

Providing a specialist ultrasound service to first opinion veterinary practices has been a significant part of my case load for 10 years. This presentation discusses the set-up and day to day management of the service and the advantages and disadvantages of the service in the context of client, patient, first opinion practice and sonographer.

16.35
Debate Session: The future of Veterinary Sonography

1. Can BMUS and Royal College of Veterinary Surgeons collaborate to develop and promote a set of Small Animal Veterinary Ultrasound Practice Standards/Guidelines to help raise the level of clinical ultrasound practice?

2. Can Diagnostic Medical Sonographers contribute to the Veterinary Specialist Imaging Workforce?
DAY TWO
Wednesday 5th December

On The Stand Education - Exhibition Hall

10.30
Small parts ultrasound imaging - Philips Stand 13
Now possible with a single transducer

13.00
BioAcoustic Imaging – Taking Ultrasound to New Heights! - Siemens Stand 10
As our patients present with ever increasing biodiversity and challenge us to image to new heights and indeed great depth, Siemens Healthineers presents a series of ultrasound case studies, undertaken with the ACUSON Sequoia, demonstrating new innovations in deep abdominal imaging; advanced ultrasound applications such as point and 2D shearwave technologies and advanced contrast enhanced ultrasound (CEUS). Join us to experience how Siemens Healthineers has addressed current challenges in abdominal imaging and to witness in real time the capabilities of the ACUSON Sequoia.

15.00
The use of ultrasound, everywhere! - Philips Stand 13
Breaking barriers with Philips Lumify

2018 Annual Dinner and Awards Ceremony

The Monastery, Gorton Lane, Manchester, M12 5WF
INTERVENTIONAL

11.00 – 12.30 Led by – Mrs Pamela Parker, Hull and East Yorkshire Hospitals NHS Trust, Mrs Catherine Kirkpatrick, United Lincolnshire Hospitals Trust.

Ultrasound guided interventional procedures are an integral part of most ultrasound services. Increasingly these procedures, once the domain of the consultant radiologist, are now becoming more common place for non-medical practitioners such as sonographers, nurses and physiotherapists as well as our radiology registrar colleagues. This practical session will provide an overview of core skills and techniques used to deliver these types of services. It will feature a number of stations, manned by experts, focusing on different methods of intervention such as FNA, core biopsy, prostate biopsy, drainages, MSK injections and histology preparation. If you are new to interventional procedures or want to hone your skills and take home top tips from our team of experts then this session is for you.

FACULTY

Dr Stephanie Edwards, Manchester Royal Infirmary
Dr Benjamin Stenberg, Newcastle upon Tyne Hospitals NHS Trust
Prof Rhodri Evans, Swansea University
Mrs Clare Drury, Hull Royal Infirmary
Dr Oliver Byass, Hull and East Yorkshire Hospitals Trust

MSK FUNDAMENTAL

13.30 – 17.00 Led by – Mrs Lorelei Waring, University of Cumbria, Miss Katie Simm, Whiston Hospital

This half day practical workshop will build on information gained from the morning lectures on a ‘how to scan’ basis.

Stations will be divided into 3 sections, shoulder, hand/wrist and foot/ankle. Experienced sonographers/radiologists will be on hand to help delegates practice basic patient position and ultrasound techniques.

FACULTY

Miss Lynn Bradley, Diagnostic Ultrasound Coventry
Mr Adam Sanders, Alliance Medical
Mrs Rachel Wilson, Hull Royal Infirmary
Mrs Sophie Cochran, Pilgrim Hospital
Dr Mike Smith, Cardiff University
Mrs Sandra Quigley, Whiston Hospital
Mrs Kirstie Godson, Mid Yorkshire Hospitals NHS Trust
Mr Mike Bryant, Blackpool Teaching Hospitals Trust
NEW TECHNOLOGIES FOR CLINICAL AND PRECLINICAL RESEARCH INTO ULTRASOUND THERAPY AND IMAGING

10:00 - 13.00
Arrival and registration

Chairs, Prof Jean Francois Aubry, Institut Langevin Paris, Prof Carmel Moran, University of Edinburgh

10.20
Opening the blood brain barrier with an implanted ultrasound device for increasing the penetration of Carboplatin into the brain: Preclinical and clinical results, Cyril Lafon, INSERM, Lyon, France

10.40
Non-linear acoustic emissions from therapeutically driven contrast microbubbles, Dr Paul Prentice, University of Glasgow

10.55
Development of a 1-D linear phased ultrasound array for intravascular sonoporation, Alexandru Corneliu Moldovan, University of Strathclyde

11.10
QUANTuM: A CSO Knowledge Transfer Partnership focusing on quality assurance in MR guided High Intensity Focused Ultrasound, Fiammetta Fedele, St Thomas’ Hospital, London

11.25
Motion Compensation for High Frame-rate Contrast-enhanced Echocardiography using Diverging Waves: Image Registration Versus Speckle Tracking Based Method, Luzhen Nie, University of Leeds

11.40
Experimental variation in the measurement of ultrasound fields, Elly Martin, University College London

11.55
A new protocol for in vitro study of Low Intensity Pulsed Ultrasound (LIPUS), Jill Savva, University of Glasgow

12.10
Ultrasound-assisted drug delivery to solid tumours in silico, M.O.de Andrade, University College London

12.25
HIFU Project in Oxford: Up-to-date Clinical Status Feng Wu, University of Oxford

12.40
Machine Learning for Cavitation Detection, Dr David Sinden, National Physical Laboratory

12.55
What YOU can do for ThUNDDAR – prizes, funding and opportunities Steven Freear, University of Leeds and Gail ter Haar, Royal Marsden Hospital

13.00
Lunch and access to technical exhibition

AFTERNOON SESSION

13.45 - 16.20
Chairs Prof Cyril Lafon, INSERM, Lyon, Prof Steven Freear, University of Leeds

13:45
Modulating brain activity with focused ultrasound: feasibility, challenges and recent breakthroughs. Jean Francois Aubry, Institut Langevin, Paris

14.05
A preclinical study of the combinatorial effects of pulsed focused ultrasound and immune checkpoint inhibitors in pancreatic cancer Petros Mouratidis, ICR, London
14.20 Frequency optimisation for opening the blood-brain barrier, Bradley Treeby, University and Imperial Colleges, London

14.35 Non-bubble mechanisms of thrombolysis, Carr Everbach, University of Oxford

14.50 Photoacoustic imaging with photothermal therapy and gold nanorods for a new approach to lung cancer management, Dr James McLaughlan, University of Leeds

15.05 Shear wave elastography safety in fetus: A quantitative health risk assessment, Maha Issaoui, University Clermont Auvergne

15.20 A Technique for the Prediction of HIFU Fields Using Only Electrical Measurements, Christopher Adams, University of Leeds

15.35 Development of an experimental platform for rapid prototyping of UmTDD methods, Roger Domingo-Roca, University of Glasgow

15.50 Focused ultrasound for improved cancer siRNA delivery, Shahd Abuhelal, Kings College, London
“For a completely new OBS/GYN experience let us introduce you to the NEW”

HERA W10

BMUS 2018 - Stand 17

TEL: 0208 205 9500 EMAIL: info@mishealthcare.co.uk WEB: www.mishealthcare.co.uk
AT A GLANCE DAY THREE
Thursday 6th December

<table>
<thead>
<tr>
<th>Session Start Times</th>
<th>LECTURES</th>
<th>PRACTICAL SESSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PLENARY 1</td>
<td>PLENARY 2</td>
</tr>
<tr>
<td>Members Suite</td>
<td>Obstetrics 1</td>
<td>MSK Advanced 1</td>
</tr>
<tr>
<td>The Pavilion 1st Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1864 Suite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Pavilion 2nd Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lancaster Suite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Pavilion 2nd Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Shipley Club Suite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Pavilion 2nd Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezzanine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Point 3rd Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFRESHMENT BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstetrics 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSK Advanced 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Education Forum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowel Masterclass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUNCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.25 – 13.45 : Education on the Stand – Hitachi Medical Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstetrics 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Issues 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSK Advanced Practical Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFERENCE CLOSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The three obstetric sessions at this year’s ASM combine latest research with discussion around some of the practical challenges and controversies facing sonographers delivering aspects of the routine obstetric screening programme in the UK.

Each session also has time for robust, informative and, possibly, controversial debate between its panel of speakers.

Our aim is to celebrate BMUS’ 50th birthday in style, by providing an exciting programme delivered by excellent speakers to an enormous audience.

This session addresses first trimester screening without NT, the outcome of large NTs and raises the thorny issue of early anomaly scanning.

OBSTETRICS 1

09.00 – 10.50

Chairs – Dr Trish Chudleigh, The Rosie Hospital, Cambridge University Hospitals Trust and University of Hertfordshire, Ms Ellen Dyer, The Rosie Hospital, Cambridge University Hospitals Trust

The three obstetric sessions at this year’s ASM combine latest research with discussion around some of the practical challenges and controversies facing sonographers delivering aspects of the routine obstetric screening programme in the UK.

Each session also has time for robust, informative and, possibly, controversial debate between its panel of speakers.

Our aim is to celebrate BMUS’ 50th birthday in style, by providing an exciting programme delivered by excellent speakers to an enormous audience.

This session addresses first trimester screening without NT, the outcome of large NTs and raises the thorny issue of early anomaly scanning.

09.00

Welcome and introductions, Dr Trish Chudleigh, The Rosie Hospital, Cambridge University Hospitals Trust and University of Hertfordshire

09.05

First trimester screening without NT – The Dutch experience, Dr Titia Cohen-Overbeek, Emasmus University Medical Centre, Netherlands

09.35

What happens to NTs 35mm and above?, Mr Pran Pandya, University College London Hospitals

10.05

Antenatal diagnosis of congenital heart disease over a two-year period in an NHS tertiary referral centre, Victoria White1, Gillian Coleman1, Amita Mahendru2, 1Obstetrics Nottingham University Hospitals NHS Trust, 2Feto-maternal Medicine Nottingham University Hospitals NHS Trust (Proffered Paper)

10.15

Challenges to professional autonomy: Australian sonographers’ experiences in communicating adverse outcomes to pregnant patients, Samantha Thomas, Kate O’Loughlin, Jillian Clarke, Faculty of Health Sciences University of Sydney (Proffered Paper)

10.25

First trimester anomaly detection – Seek and you shall find, Prof Aris Papageorghiou, St George’s Hospital, London and Oxford Maternal and Perinatal Health Institute, University of Oxford

OBSTETRICS 2

11.20 – 13.10

Chairs – Dr Trish Chudleigh, The Rosie Hospital, Cambridge University Hospitals Trust and University of Hertfordshire, Dr Titia Cohen-Overbeek, Emasmus University Medical Centre, Netherlands

This session offers masterclasses in the fetal brain and the heart, together with the benefits - or otherwise - of saving images of fetal anatomy for future review.

11.20

Masterclass – The fetal brain: Assessment to outcome, Prof Aris Papageorghiou, St George’s Hospital, London and Oxford Maternal and Perinatal Health Institute, University of Oxford

11.50

Masterclass – The fetal heart: Adding colour, Ms Jo Wolfenden, Great Ormond Street Hospital
12.20
To FASP or not to FASP? Investigating the impact of storing only FASP recommended anomaly images on patient recall rate, Catherine Sampson, Gillian Coleman, Ultrasound Nottingham University Hospitals NHS Trust (Proffered Paper)

12.30
Improving confidence of sonographers when performing obstetric Middle Cerebral Artery (MCA) doppler, Catherine Elmes, Georgina Redman, Royal United Hospital (Proffered Paper)

12.40
Masterclass in excellence: 50 yrs of imaging experience, an overview of the future, Prof Stuart Campbell, Create Fertility

OBSTETRICS 3

14.00 – 16.00
Chairs – Dr Trish Chudleigh, The Rosie Hospital, Cambridge University Hospitals Trust and University of Hertfordshire, Prof Stuart Campbell, Create Fertility

This session combines the past, the present and the future, with an overview of the obstetric ultrasound imaging journey over the past 50 years, the value of abdominal circumference measurements in the current programme to save babies’ and screening for fetal growth restriction in the future.

14.00
Evaluating expertise – is saving images a good thing? Dr Titia Cohen-Overbeek, Emasmus University Medical Centre, Netherlands

14.20
Do abdominal circumference measurements save babies lives, Ms Ellen Dyer, The Rosie Hospital, Cambridge University Hospitals Trust

The MBRACE-UK confidential enquiry in 2016 highlighted failure to identify small babies at risk of still birth as an issue. The Saving babies’ lives care bundle has been implemented as a result of the enquiry, and recommends serial third trimester growth scans for high-risk women. Many trusts now use customised growth charts to improve the detection of small babies. But how accurate are the measurements we take and what can we do to improve them? A question that Ellen Dyer an Obstetric Sonographer from Cambridge will attempt to answer with a focus on abdominal circumference measurements.

14.40
A retrospective study investigating the use of MCA/UA doppler pulsatility index ratio as a prediction for interventions and poor obstetrics outcomes in the case of reduced fetal movements, Shelley Wyeth, Clinical Imaging Royal Cornwall Hospital NHS Trust (Proffered Paper)

14.50
From fetal and neonatal growth reference to international standards: A paradigm shift, Prof Aris Papageorghiou, St George’s Hospital, London and Oxford Maternal and Perinatal Health Institute, University of Oxford

15.15
Screening for fetal growth restriction: The future, Prof Gordon Smith, Cambridge University and The Rosie Hospital, Cambridge University Hospitals Trust

15.40
Round table discussion
MSK ADVANCED 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00</td>
<td>Chairs – Miss Katie Simm, Whiston Hospital, Mrs Sara Riley, Bradford Teaching Hospitals</td>
</tr>
<tr>
<td>09.00</td>
<td>The role of ultrasound in the diagnosis and management of ankle ligament injuries, Dr Chad Ali, Royal Preston Hospital</td>
</tr>
<tr>
<td>09.30</td>
<td>Dynamic Ultrasound Manoeuvre in Anterior Ankle Impingement, Nathakorn Piangcharoen, Sports Medicine Sheffield United Football Club (Proffered Paper)</td>
</tr>
<tr>
<td>09.40</td>
<td>Ultrasound imaging of the groin – A surgeons perspective, Prof Aali Sheen, Manchester Institute of Health and Performance</td>
</tr>
<tr>
<td>10.10</td>
<td>The groin: A case of a hydrocoele of the Canal of Nuck, Khalida Jan, Radiology City Hospitals Sunderland (Proffered Paper)</td>
</tr>
<tr>
<td>10.20</td>
<td>The emerging role of ultrasound in the diagnosis of GCA, Dr Pippa McCaffrey, Whiston Hospital</td>
</tr>
</tbody>
</table>

MSK ADVANCED 2

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.20</td>
<td>Chairs – Miss Katie Simm, St Helens and Knowsley Teaching Hospital NHS Trust, Mrs Sara Riley, Bradford Teaching Hospitals</td>
</tr>
<tr>
<td>11.20</td>
<td>Paediatric rheumatology and the role of ultrasound, Dr Jeanette Kraft, Leeds Teaching Hospitals NHS Trust</td>
</tr>
</tbody>
</table>

SCIENTIFIC PROGRAMME

DAY THREE

Thursday 6th December

Plenary 2 - 1864 Suite

MSK ADVANCED 1

09.00 – 10.50
Chairs – Miss Katie Simm, Whiston Hospital, Mrs Sara Riley, Bradford Teaching Hospitals

This session is aimed at experienced MSK practitioners wishing to advance their clinical skills and knowledge base.

The sessions will offer an introduction to the role of US in MSK interventional work. We will also aim to highlight the continually developing role of ultrasound in the diagnosis and management of conditions previously more commonly imaged by alternative methods.

09.00
The role of ultrasound in the diagnosis and management of ankle ligament injuries, Dr Chad Ali, Royal Preston Hospital

Ankle injuries are relatively common, accounting for almost 14% of sports related visits to the Emergency Department (ED). X-rays are the most helpful first line of imaging and evaluate the bony structures; however, many injuries only affect the ligaments and soft tissues. Whilst MRI has undoubted value in evaluating bones and soft tissues, ultrasound (US) assessment offer several benefits over MRI such as dynamic evaluation, stress testing and cost effectiveness. This talk will cover normal anatomy, scanning technique and review the appearances of the ligaments on the lateral, medial and anterior aspects of the ankle, with examples of pathological findings. The ability to detect incidental adjacent abnormalities in the tendons and soft tissues will also be discussed.

09.30
Dynamic Ultrasound Manoeuvre in Anterior Ankle Impingement, Nathakorn Piangcharoen, Sports Medicine Sheffield United Football Club (Proffered Paper)

09.40
Ultrasound imaging of the groin – A surgeons perspective, Prof Aali Sheen, Manchester Institute of Health and Performance

10.10
The groin: A case of a hydrocoele of the Canal of Nuck, Khalida Jan, Radiology City Hospitals Sunderland (Proffered Paper)

10.20
The emerging role of ultrasound in the diagnosis of GCA, Dr Pippa McCaffrey, Whiston Hospital

MSK ADVANCED 2

11.20 – 13.10
Chairs – Miss Katie Simm, St Helens and Knowsley Teaching Hospital NHS Trust, Mrs Sara Riley, Bradford Teaching Hospitals

11.20
Paediatric rheumatology and the role of ultrasound, Dr Jeanette Kraft, Leeds Teaching Hospitals NHS Trust

Children do not usually present with the diagnosis of a rheumatological condition and therefore ultrasound is often the first line investigation in a limping child or a child with a swollen or painful joint. The talk will review findings in transient synovitis, septic arthritis, osteomyelitis and inflammatory joint disease that can be identified on ultrasound and may help the clinician to diagnose inflammatory arthritis or suggest other causes for the joint swelling.
An overview of the clinical spectrum of juvenile inflammatory arthritis (JIA) will be presented as JIA is a heterogeneous group of diseases that develop before the age of 16 and involve persistent inflammation of one or more joints. JIA may lead to early joint destruction, loss of function and impaired growth which can cause significant psychological problems and loss of schooling. Modern therapies can prevent joint destruction but may have serious side effects in the paediatric population.

In a child with known JIA, ultrasound can be used to monitor disease activity and to detect complications. Imaging strategies in JIA involving ultrasound as well as other imaging modalities will be presented and the advantages and limitations of ultrasound in examining joints in children highlighted.

11.50

MSK interventional procedures and ultrasound, Mrs Alison Hall, Keele University and Cannock Chase Hospital

Corticosteroid and local anaesthetic joint injection therapy is still of great importance in the management of musculoskeletal disease and has been common in rheumatology and orthopaedic practice for the last 50 years. Other therapeutic substances are now also used – Botulinum toxin, Platelet rich Plasma – being two of the most common.

Most injections are delivered ‘blind’ using clinical skills and anatomical landmarks to determine the correct site but in recent years the use of imaging techniques has been proven to increase the accuracy of needle placement over clinical guidance. The use of ultrasound in this way has also led to advances in other therapeutic interventions such as carpal tunnel and trigger finger release.

However, there is still conflicting evidence around expected improvements in patient outcomes following ultrasound guided injections in clinical practice. The variable accuracy reported in available studies may reflect the differences in the individual injectors’ skills in using ultrasound to locate the correct injection site and deliver the injectate accurately.

Ultrasound is renowned for its operator dependence and appropriate training is essential to provide a safe and effective service. With appropriate training and governance, there are many health care professionals for whom it may be appropriate to guide their injectate accurately to a specific target or to carry out other therapeutic procedures. Also, those experienced in Musculoskeletal Ultrasound are well placed to extend their role to include ultrasound guided injections.

This session aims to outline common musculoskeletal intervention techniques - their evidence, training recommendations and clinical governance issues.

12.20

Ultrasound confirmation of heterotrophic new bone formation after distal biceps tendon rupture repair, Aarushi Gangahar1,2, Kate Kingston1, York Radiology Department York Hospital, Leeds Radiology Academy (Proffered Paper)

12.30

Ultrasound of bone fractures, Richard Beese, Radiology Queen Elizabeth Hospital (Proffered Paper)

12.40

No win no fee, Sue Foster, Northern Medical Ultrasound

12.55

Question and answer session
Plenary 2 - 1864 Suite

GENERAL MEDICAL TOP TIPS

14.00 – 16.00 Chairs – Peter Cantin, University Hospital Plymouth NHS Trust, Derriford Hospital, Mr Stephen Wolstenhulme, Leeds Teaching Hospitals NHS Trust

14.00 Ultrasound of the bariatric patient: Pearls and pitfalls, Mrs Pamela Parker, Hull and East Yorkshire Hospitals Trust

14.30 Paediatric ultrasound without tears, Mrs Terry Humphrey, Leeds Teaching Hospitals NHS Trust

Ultrasound is often the primary and sometimes the only imaging investigation children will undergo. With good technique it is possible to optimise the imaging appearances, enabling accurate diagnosis, particularly in acute cases.

This talk aims to outline good paediatric ultrasound technique with practical advice regarding diagnosis and common errors to avoid.

15.00 Ultrasound of the appendix. Hints and tips, Dr Nigel Grunshaw, Furness General Hospital

Identification of the normal and inflamed appendix is essential in the assessment of acute right iliac fossa pain. This lecture will focus on the techniques to identify the normal appendix and the ultrasound appearances of acute appendicitis. Particular emphasis will be given to help its identification in unusual locations, the appearances of mild appendicitis, the value of secondary signs and the important differentials and pitfalls.

15.30 The difficult and demanding scan – An everyday occurrence for ultrasound practitioners?, Mrs Hazel Edwards, East and North Hertfordshire NHS Trust

Every healthcare professional who has ever performed an ultrasound examination will know what it is like to experience a difficult or demanding scan. Newly qualified ultrasound staff are particularly at risk of feeling isolated and ‘cut adrift’ and many find scanning independently a challenge. Such experiences are not confined to novices and new practitioners either. Advanced and consultant sonographers as well as radiologists and radiology trainees may also often feel ‘in at the deep end’ when acquiring skills in new areas of clinical practice in a time-pressured environment. In addition, patient demographics and expectations are changing and we need to be able to respond accordingly. This session will look at what may constitute a difficult or demanding scan and offer strategies to help the practitioner. Tips will be given on how to identify which aspect of the scan is difficult, stress management, time management and how to avoid suboptimal reporting in the face of adversity.
MEDICAL PHYSICS - ULTRASOUND TECHNOLOGY IN MEDICINE PAST, PRESENT AND FUTURE

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00</td>
<td>Chairs – Dr Stephen Russell, The Christie NHS Foundation Trust, Dr Barry Ward, Freeman Hospital</td>
</tr>
<tr>
<td>09.00</td>
<td>A history of ultrasound imaging technology, Dr Tony Whittingham, Newcastle Upon Tyne</td>
</tr>
<tr>
<td>09.45</td>
<td>Transducer technology and design, Dipl.-Ing Christian Degal, Fraunhofer-Institut Für Biomedizinische</td>
</tr>
<tr>
<td></td>
<td>In this talk an overview on ultrasound physics and transducer technology will be given. After a short introduction about the speaker and his institution, the possibilities of generating ultrasound will be discussed. Actually, the use of piezoelectric ceramic or single crystal material is the most frequently used way to convert electrical energy into an ultrasound wave and vice versa. With the propagation of the acoustic wave away from the transducers aperture the sound field of the probe is generated. Structures within the sound field reflect a small part of the acoustic energy and with that delivers the diagnostic information to the sonographer. The principals of transducers and the basic parts of transducers will be explained. Then a closer look at the different types of transducers from single element transducers up to matrix arrays and multimodal transducers will be taken. After a short glance at the topic of signal analysis the talk is ending with a discussion of the limits of ultrasound transducers.</td>
</tr>
<tr>
<td>10.15</td>
<td>Probe acceptance testing, Dr Nicholas Dudley, Lincoln County Hospital</td>
</tr>
</tbody>
</table>

MEDICAL PHYSICS – PHOTO ACOUSTIC AND MIXED MODALITY IMAGING

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.20</td>
<td>Chairs – Dr Stephen Russell, The Christie NHS Foundation Trust, Dr Nick Dudley, Lincoln County Hospital</td>
</tr>
<tr>
<td>11.20</td>
<td>Photo acoustic imaging, Prof Paul Beard, University College London</td>
</tr>
<tr>
<td>11.50</td>
<td>Time harmonic elastography, Dr Heiko Tzachatzsch, Charité-Universitätsmedizin Berlin</td>
</tr>
<tr>
<td>12.20</td>
<td>Ultrasound metrology at NPL: Past present and future, Dr Bajram Zeqiri, National Physical Laboratory</td>
</tr>
<tr>
<td>12.50</td>
<td>Is ultrasound safe? – That’s a definite maybe, Dr Prashant Verma, Royal Hallamshire Hospital</td>
</tr>
</tbody>
</table>

MEDICAL PHYSICS – MEDICAL APPLICATION OF ULTRASOUND - THE FUTURE

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.00</td>
<td>Chairs – Dr Stephen Russell, The Christie NHS Foundation Trust, Dr Prashant Verma, Royal Hallamshire Hospital</td>
</tr>
<tr>
<td>14.00</td>
<td>Ultrasound technology the future, Prof Sandy Cochran, Glasgow University</td>
</tr>
<tr>
<td>14.45</td>
<td>Artificial intelligence in ultrasound, Dr Xujiiong Ye, University of Lincoln</td>
</tr>
</tbody>
</table>
Plenary 3 - Lancaster Suite

15.15 **Cosmetic ultrasound – The exciting world of body sculpting and skin tightening**, Dr Barry Ward, Freeman Hospital

15.50 **QUANTuM: A CSO knowledge transfer partnership focusing on quality assurance in MR guided High Intensity Focused Ultrasound**, Fiammetta Fedele¹, Bajram Zeqiri², Daniel Butler¹, Piero Miloro², David Sinden², Ilyas Shahzad¹, Leo Monzon¹, Hiba Abbas¹, Filippo Bosio¹, Maya Thanou¹, Afshin Gani¹, ¹Guy’s and St Thomas NHS Foundation Trust, ²National Physical Laboratory, ³King’s College London (Proffered Paper)

15.55 **High frame-rate triplex cardiac imaging using diverging waves**, Luzhen Nie¹, David M. J. Cowell¹, Thomas Carpenter¹, James R. McLaughlan¹, Arzu A. Čubukçu², Steven Freear¹, ¹School of Electronic and Electrical Engineering University of Leeds, ²East Cheshire NHS Trust (Proffered Paper)

Education On The Stand - Exhibition Hall

13.25 **Vasa Praevia: A logical Approach** - Hitachi Medical Systems Stand 1

Presented by Elizabeth Daly-Jones, Imperial College Healthcare NHS Trust

‘People only see what they are prepared to see’ Ralph Waldo-Emerson.

Vasa praevia (VP) has a reported fetal mortality rate of 60% if not recognized before attempt at vaginal delivery. Prenatal detection by ultrasound is possible in nearly all cases, but this can be notoriously difficult unless there is a high index of suspicion. This talk will focus on the ultrasound diagnosis and address some of the challenges that the sonographer might face. There will be illustrations of recent cases involving expert Histological review.

1. RCOG (January 2011) Greentop guideline no. 27 Placenta Praevia, Placenta Accreta and Vasa Praevia.

Practical Workshop Session - 3rd Floor Mezzanine Area

ELASTOGRAPHY MASTERCLASS

09.00 – 10.50 **Led by** – Prof Adrian Lim, Imperial College Healthcare NHS Trust and Dr Tina Fang, King’s College Hospital

This workshop will outline the different Elastography technologies available followed by a practical session on how to perform shearwave Elastography using different scanners. Potential clinical applications will also be discussed.

The workshop is aimed at sonographers and sonologists who would like to start utilising Elastography in their routine clinical practice.
BOWEL ULTRASOUND FROM ANATOMY TO PATHOLOGY

11.20 – 13.10

Led by – Dr Nigel Grunshaw, Furness General Hospital, Dr Tony Higginson, Queen Alexandra Hospital

The ability to undertake ultrasound of the bowel is an invaluable skill for the general ultrasound practitioner. This practical masterclass is intended to give the underpinning knowledge and skills for a basic proficiency in bowel ultrasound using a combination of lectures and live practical scanning.

It is hoped that delegates will gain an understanding of the ultrasound appearances of the normal GI tract, the technique of scanning and a concept of how disease processes modify the ultrasound appearances. It is hoped that delegates will feel more confident to try out these techniques in their own institutions after attendance at this workshop.

11.20
Introduction, Dr Nigel Grunshaw, Furness General Hospital

11.25
Anatomy and technique, Dr Chris Ball, Queen Alexandra Hospital

• Anatomy and Pathology
• Methods of Bowel Investigation
• Role of Ultrasound in Inflammatory Bowel Disease
• Technique of Bowel Ultrasound
• Normal Bowel Appearances
• Ultrasound Pathology in Inflammatory Bowel Disease
• Interesting cases

11.50
Live Demo Scanning, Dr Nigel Grunshaw, Furness General Hospital, Dr Tony Higginson, Queen Alexandra Hospital, Dr Chris Ball, Queen Alexandra Hospital, Dr Peter Cantin, University Hospital Plymouth NHS Trust, Derriford Hospital

12.30
From anatomy to pathology – Effects of disease, Dr Nigel Grunshaw, Furness General Hospital

Bowel ultrasound is often perceived as difficult to perform and interpret. Following on from the earlier lecture on anatomy/technique and workshop demonstrations, this lecture will endeavour to explain how different disease processes alter the ultrasound appearances of the bowel wall layers and surrounding fat. Using numerous examples, the thought processes required to interpret the ultrasound appearances and pathological processes will be explored. By the end of the session the attendee will hopefully have a greater understanding and confidence in interpreting the Ultrasound appearances of GI pathology.

13.00
Hints and tips from full faculty

MSK ADVANCED

14.00 – 16.00

Led by – Mrs Lorelei Waring, University of Cumbria, Mrs Katie Simm, St Helens and Knowsley Teaching Hospital NHS Trust
This practical session is aimed at those with current MSK ultrasound skills wishing to increase their knowledge of the more advanced techniques. The more complex areas of hip and groin, knee and elbow will be covered as well as ultrasound guided MSK interventions and scanning for inflammatory arthritis.

Experienced sonographer/radiologists will be on hand to help delegates get the maximum benefit from hands on, small group teaching.

FACULTY

- Dr Chad Ali, Royal Preston Hospital
- Mrs Sara Riley, Bradford Teaching Hospitals
- Mrs Clare Drury, Hull Royal Infirmary
- Mr Mark Maybury, Heart of England NHS Foundation Trust
- Mr Andrew Longmead, Kings Mill Hospital
- Mrs Kirstie Godson, Mid Yorkshire Hospitals NHS Trust
- Mr Kumbulani Zhou, Harmonic Medical Sonography
- Dr Simon Bardmore, Lancashire Teaching Hospital

Satellite Session - Brown Shipley Club Suite

CLINICAL EDUCATION FORUM 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00 – 10.50</td>
<td>Chairs – Mr Gerry Johnson, Tameside and Glossop Integrated Care NHS Foundation Trust</td>
</tr>
<tr>
<td>09.00</td>
<td>Clinical Education: Where are we now?, Mrs Gill Dolbear, Canterbury Christ Church University</td>
</tr>
<tr>
<td>09.30</td>
<td>What makes a good ultrasound placement, past, present and future, Mrs Gill Harrison, Society and College of Radiographers, City University of London</td>
</tr>
<tr>
<td>10.00</td>
<td>Ultrasound Preceptorship, the challenges, Mrs Alison McGuinness, Mid Yorkshire Hospitals NHS Trust</td>
</tr>
<tr>
<td>10.30</td>
<td>Clinical education and mentorship - the Australian model, Ms Jodie Long, Australasian Sonographers Association</td>
</tr>
</tbody>
</table>

CLINICAL EDUCATION FORUM 2

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.20 – 12.50</td>
<td>Chairs – Mr Gerry Johnson, Tameside and Glossop Integrated Care NHS Foundation Trust</td>
</tr>
<tr>
<td>11.20</td>
<td>Ultrasound Simulation, Mr Simon Richards, University of Teesside</td>
</tr>
<tr>
<td>11.50</td>
<td>How to be a good mentor and provide useful feedback, Mrs Allison Harris, City University of London</td>
</tr>
<tr>
<td>12.20</td>
<td>Preceptorship Lincoln model, getting it right, Mrs Catherine Kirkpatrick, United Lincolnshire Hospitals NHS Trust</td>
</tr>
<tr>
<td>12.50</td>
<td>Question and answer session</td>
</tr>
</tbody>
</table>
POSTER EXHIBITION 2018
Breast

1. **Breast pathology - Early diagnosis by ultrasound**, Rute Santos, Daniela Marques, Ana Raquel Ribeiro, Medical Imaging and Radiotherapy Department Coimbra Health School, Polytechnic Institute of Coimbra, Portugal

 Background:
 Ultrasound is a non-invasive, low-cost technique, does not use ionizing radiation and it is a "real-time" image, and for these reasons this method is first-rate in several situations.

 Purpose:
 To demonstrate breast ultrasound evaluation as a first-line diagnostic method and to evaluate the variation of the breast characteristics along the age.

 Methods:
 105 women with a mean age of 30 years participated, divided into three age groups: 18-39, 40-59 and 60-79 years, excluding participants subject to mastectomy.

 After completing the informed consent, all participants answered personal and sociodemographic questions, such as personal and family history, menstrual cycle, pregnancy, ultrasound and mammography, among others. They were then submitted to a bilateral breast ultrasound examination. Subsequently all the images and their data were analyzed and a technical report of the examination was given to all the participants.

 Results:
 A total of 105 women with a mean age of 30 years participated, 58 of whom underwent the examination for the first time. In 31, changes (of which only 7 were known) were diagnosed. It was verified that, according to the age group, the breast stromal density varied, being that in the women with greater age this presented lower density.

 Conclusions:
 Ultrasound is a good method for breast evaluation and can be considered important for the early evaluation of breast pathology and follow-up of the pathology.

General Imaging

2. **Ultrasound in developing countries**, Daniel Denniss, Radiology, Queen Elizabeth Hospital Kings Lynn NHS Trust

 Background:
 Over the past 15 years I have been involved in several projects and relief work as a sonographer and radiographer in developing countries; the Amazon jungle of Ecuador (1 year), the Andes mountains in Peru (several visits), Uganda and Ghana.

 Introduction:
 1.2 billion people in the world live in poverty and many people in the developing world die from curable diseases. Ultrasound has a key role in diagnosis of many of these diseases and is an essential tool especially in the absence of other imaging modalities like CT and MRI.

 Aim:
 Drawing on personal experiences and literature, the aim of the poster is to discuss the role and challenges of ultrasound in the developed world using photographs, case studies and ultrasound images.
Discussion:
1. Working with old or poorly functioning equipment
2. The challenges of teaching ultrasound (and un-teaching old/poor technique!)
3. Common and unusual pathologies including infectious tropical diseases
4. Scanning and reporting in a foreign language
5. Challenges and rewards of living in a developing country

Summary:
Ultrasound is a highly useful imaging modality in the developing world. Working in other countries can provide huge benefits to local populations and can improve knowledge, skills and experience for both the community and the individual sonographer.

Information on resources available for those interested in working in the developing world.

3. **Soft tissue lumps - A case of thrombosis of the deep dorsal vein of the penis**, Borsha Sarker, Radiology, BMI Woodlands Hospital

Background:
There are many case reports of thrombosis of the superficial dorsal vein of the penis, but thrombosis of the deep dorsal vein of the penis is much more unusual.

Case Report:
Ultrasound for soft tissue lumps is commonplace in every radiology department and a case such as this could cross any sonographers list. This case study will document a spontaneous presentation of venous thrombosis of the deep dorsal vein of the penis, presenting as a palpable lump via the General Practitioner and document pictorially the differentiating factors.

Discussion:
We report the clinical and ultrasound findings and discusses the functional and therapeutic issues related to the condition and its differentials of superficial dorsal penile vein thrombophlebitis (Mondors Disease). There are reported relationships with thrombophilia and trauma, but spontaneous thrombosis is rare.

While no therapy is required for superficial vein thrombosis, unless there are other risk factors for venous thromboembolism, complete or segmental penile vein thrombosis has been treated with fibrinolytics and anticoagulation.

The deep vein drains the glans, corpus spongiosum and distal two-thirds of the corpora cavernosa.

A relationship between deep vein thrombosis and deep penile thrombosis seems logical and anticoagulation, as for these disorders may be applicable to deep penile vein thrombosis. To date there have been few reports of spontaneous thrombosis of the deep dorsal penile vein and no treatment recommendations.

4. **Incorporating ultrasound into undergraduate anatomy teaching: A student-led multidisciplinary pilot**, Joseph Lehmann, Annabel Lloyd-Thomas, Jonathan Mayhew, Scott Rice, University College London Medical School

New doctors are now expected be as familiar with radiological anatomy as they are with the more ‘traditional’ surface anatomy. Indeed, there are now calls for radiological anatomy to rise to half of the total curricular time across a contemporary undergraduate programme. Clinical ultrasound (US) is a widely used first-line imaging modality, providing real-time functional imaging such as blood flow, peristalsis, and the influence of variables such as respiration and body fat.

As a group of learners and teachers working together, we undertook an innovative student-led project introducing ultrasound as an adjunct to anatomical learning early in the undergraduate medical programme. The project involved 6 structured 20-minute small-group learning sessions led by a clinical Radiologist with randomly selected year 1 medical students. The standardised sessions included an introduction to the technique of US and demonstration of key abdominal structures on a pre-screened healthy volunteer.
Student participants were invited to complete a questionnaire incorporating Likert scale questions before and after the demonstration sessions. The questions were designed to assess the acceptability and impact of US teaching on learning, as well as to gauge student views on their existing level of US and radiological anatomy knowledge.

The results showed that participating students felt strongly that US was an important learning tool, which complemented traditional teaching methods. They felt it was not a distraction and were comfortable observing volunteers being scanned. Participating students felt strongly that US reinforced knowledge of anatomical structures and was effective in helping them visually relate surface anatomy to the underlying structures.

This pilot study has enabled us to ascertain the feasibility of this educational intervention, as well as its effectiveness as a learning tool. The pilot study will now be expanded to include year 2 students with the overall aim of forming a focused, vertically integrated point-of-care ultrasound curriculum.

5. **Retrospective analysis to assess the diagnostic value and accuracy for characterisation of focal lesions with contrast enhanced ultrasound (CEUS)**, Sarah Carpenter, Benjamin Stenberg, Andrew McNeil, Naail Al-Zuhir, Elisabeth Pearce, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust

Objectives:
Contrast enhanced ultrasound (CEUS) was developed to overcome the limitations of conventional Doppler and B-mode ultrasound and to utilise the enhancement characteristics of focal liver lesion which are more traditionally assessed using CT and MRI. In recent years, there has been significant experience gained as well as technological improvements, in this technique. The aim of this study was to assess the local diagnostic accuracy for characterisation of focal lesions using (CEUS) by comparing the findings of those on CT/MRI and histology.

Methods:
A retrospective analysis was carried out of all patients in the authors’ centre who had CEUS studies to characterise focal liver lesions. These studies were performed between January 2014 and December 2016.

The CEUS results were compared to the findings from tissue diagnosis and CT/MRI characterisation.

Results:
A total of 333 CEUS studies were analysed – 291 of these offered a definitive diagnosis, (192 benign lesions and 109 malignant lesions were identified.)

125 of the 291 conclusive studies had further subsequent histological and radiological characterisation (CT+MRI). The positive predictive value = 90% and the negative predictive value = 95%, with a sensitivity of the CEUS findings concuring with further imaging and histology of 97% and a specificity was 84%.

Conclusion:
In this study, CEUS demonstrated an excellent specificity and sensitivity for the detected of focal lesions. CEUS, when technically feasible, can be used as a surrogate for CECT and CEMRI in the assessment of focal liver lesions and it can play a fundamental role in their identification and characterisation reducing the need for re-appointment, delays and specialist referral. CEUS offers a highly cost effective option for the characterisation of straight forward lesions such as haemangiomias.

6. **Ultrasound evaluation of obstructive jaundice in patients presenting to a ‘one-stop’ jaundice clinic**. A retrospective audit in a single centre, Caron Dames, Georgina Edwards, Rebecca Murphy, Thomas Welsh, Peter Cantin, University Hospitals Plymouth NHS Trust, Derriford Hospital

Background:
The initial evaluation of obstructive jaundice involves distinguishing intra and extra-hepatic biliary obstruction. The goal of any radiologic procedure in obstructive jaundice is to confirm the presence of biliary obstruction by detecting biliary dilatation, identify the location and extent of the obstruction and to identify the probable cause of the obstruction. Ultrasound is readily available and does not use ionising radiation and is therefore used as a first-line investigation for jaundice within our unit. The efficacy of ultrasound in the evaluation of obstructive jaundice is highly variable within the literature. Ultrasound is able to distinguish between obstructive and non-obstructive jaundice in approximately 90% of cases. Demonstration of the level and cause of jaundice by ultrasound varies within the literature but should be established in around 60% of cases.
Aim:
To determine the proportion of patients presenting with obstructive jaundice who have the level and cause of jaundice established on preliminary ultrasound.

Setting and Method:
Patient selection for this audit will be those patients who have previously presented to the ‘one-stop’ jaundice clinic within our institution. The reference standard will be the results of other imaging (MRI, CT, ERCP) and review of patient medical records.

The ultrasound reports of patients included within the audit will be retrospectively reviewed and compared with subsequent imaging/patient records to determine the number of patients in whom the cause of jaundice was correctly established by ultrasound.

Audit Standard:
Ultrasound is expected to correctly determine the cause of obstructive jaundice in 60% of cases.

Results:
The audit is ongoing. We will present the results during this poster presentation.

7. Imaging complications in orthotopic liver transplantation with doppler ultrasound: A pictorial review, Siti Umaira Binte Su’aidi, Azizah Bte Mohamed Afif, Shaniszah Bte Jamaruddin, Valerie Chan Shao Yun, Lim Sze Ying, Division of Radiological Sciences Singapore General Hospital

Background:
Liver transplantation is the main treatment for end-stage liver disease. Operator awareness of ultrasound features of post-transplantation complications is vital to graft survival. Clinical presentations and laboratory findings of graft complications are often non-specific, heralding the use of ultrasound as the first-line imaging modality in the serial monitoring of these liver allografts.

Objective:
This pictorial review aims to:
1. Illustrate the normal post-transplantation imaging findings.
2. Demonstrate post-transplantation complications and their imaging characteristics.

Methodology:
Orthotopic post-transplantation cases performed in Singapore General Hospital were evaluated using ultrasound B-mode and colour Doppler imaging. The sonographic appearances of a normal post-transplantation liver and a spectrum of cases to demonstrate the possible post-transplantation complications will be presented. These cases will be classified into three categories, namely vascular, biliary and others.

Conclusion:
Ultrasonography plays a pivotal role in the postoperative diagnosis and management of orthotopic post-transplant recipients. Understanding the imaging spectrum of normal and abnormal conditions is essential in the early diagnosis of liver transplant complications to improve patient outcome by allowing prompt and timely management.

8. Overlooked bladder pathologies in transabdominal ultrasound examinations, Kelsey Watt, Richard Chaytor, Catherine Gutteridge, Peter Cantin, University Hospitals Plymouth NHS Trust, Derriford Hospital

Background:
Transabdominal ultrasound examinations are a routine investigation in the management of surgical patients with acute abdominal or pelvic pain. The bladder is often imaged purely to measure residual urine volumes or used as a window for interrogation of the ovaries and uterus. However, there are a range of important pathologies that may be overlooked unless the bladder is specifically examined as an organ itself.
Methods:
This retrospective pictorial review of patients presenting with acute abdominal pain or urinary symptoms in a tertiary centre demonstrates the range of bladder pathologies that may be missed during transabdominal ultrasound examinations.

Results:
This imaging review includes a range of bladder pathologies that were encountered during transabdominal ultrasound urinary tract examinations, including urachal cysts, ureteroceles, emphysematous cystitis, fistulae, calculi and a range of tumors. We also review best practice for ultrasound examination of the bladder, to minimise the risk of false negative examinations.

Conclusion:
Ultrasound evaluation of the bladder should not be dismissed as purely for assessing residual urine volumes or as a ‘window’ for examination of the pelvis. Instead, dedicated examination of the bladder is required during ultrasound evaluation of the urinary tract or during routine trans-abdominal ultrasound examinations. Those undertaking ultrasound in patients with abdominal-pelvic pain or urinary symptoms should possess an understanding of potential bladder pathologies in order to accurately diagnose them and expedite management.

9. Testicular rupture: A force of 50kg, Amy Duggan1, Yvonne Green2, Therese Herlihy4, Kevin Cronin1, 1University College Dublin, School of Medicine, 2Ultrasound Mater Misericordiae University Hospital

Background:
This poster displays the application of ultrasound in the diagnosis of testicular rupture. A 27-year-old male presented to the ED with left testicular pain, 72 hours post blunt testicular trauma sustained during football training. Testicular rupture, one of the most common complications of blunt testicular trauma, is the rupture of the tunica albuginea and extrusion of testicular parenchyma. A force of approximately 50kg is required to rupture the tunica albuginea. Patients clinically present with testicular swelling, tenderness and severe pain. Many studies have reported testicular ultrasound to be fast and reliable in differentiating a broad range of time-sensitive pathologies, including testicular torsion, fracture, and rupture.

Ultrasound Findings:
Sonographic findings demonstrated an enlarged, heterogenous left testicle with disruption of the tunica albuginea indicating testicular rupture. There was an irregular contour of the left testicle and evidence of intra-testicular haematoma on B-mode imaging. The lower pole demonstrated absent perfusion on colour Doppler, providing useful information to the surgeon regarding the extent of debridement.

Discussion:
Ultrasound has a sensitivity of 100% and specificity of 65% in the detection of testicular rupture. Current management of testicular rupture is surgical exploration and repair, or orchiectomy. Prompt surgical intervention is critical in preventing testicular loss. When presentation occurs within 72 hours of injury there is a 90% salvage rate, this is reduced to only 30% salvage rate after 72 hours.

Conclusion:
Ultrasound is the modality of choice for the evaluation of blunt testicular trauma due to its high sensitivity and efficiency in assessing the integrity of the testis and vascular perfusion. Ultrasound findings can guide the physician in determining optimal treatment. Testicular rupture requires early surgical intervention to improve testicular salvage rates. Ultrasound was paramount in the diagnosis of testicular rupture in this case.

10. Ultrasound guided malignant ascites drainage - A unique multi-professional approach, Laura Laver, Ultrasound, The Great Western Hospitals NHS Foundation Trust

During 2007 to 2008, malignant ascites accounted for over 28,000 bed days in hospital in England (HES statistics). There is no evidence in favour of any specific drainage technique, however malignant ascites drainage is most commonly performed on day-case or inpatient basis. Patients often wait until fluid accumulation is substantial to avoid frequent hospital stays... resulting in a deterioration of their quality of life (Stukan 2017).
The Radiology department at GWH wished to address this issue aiming to improve End of Life (EOL) care. A self-referral out-patient malignant ascites drainage service was introduced, enabling the patient to contact the Radiology department directly and arrange an appointment at their convenience. In order for the service to be flexible it has seen the successful training of both nursing and sonography colleagues to perform ultrasound guided paracentesis using aseptic non-touch technique.

There is a paucity of reliable evidence regarding the optimum method of managing malignant ascites either at initial presentation, during treatment or palliation. (RCOG No.45). At the GWH the service involves ultrasound guided siting, the ascites is then manually drained by syringe before removal of the cannula, this requires the patient to be in the department for only a few hours.

The service offers an improvement in end of life care by being flexible, efficient and personable. The outpatient service reduces patient time in hospital resulting in a decrease in exposure to healthcare acquired infections.

The estimated cost of day patient paracentesis was £954, compared with £1473 for in-patient paracentesis. The estimated cost to perform ultrasound guided malignant ascites drainage with mechanical aspiration is approximately £805. This results in a saving of £668 per patient. The impact on hospital wards or day case units is also reduced.

11. **A case study of carotid artery skull base dissection - Ultrasound clues suggesting distal pathology**, Mathew Christie, Salford Royal Foundation NHS Trust

51 Years old patient admitted with left sided weakness and numbness and headache. MR brain scan performed: right hemisphere multiple infarcts.

A carotid ultrasound then requested which demonstrated bilateral internal carotid artery (ICA) luminal filling but very low velocities compared to the common carotid arteries (CCAs) ? significance. Additional imaging was therefore suggested.

A carotid MR demonstrated bilateral ICA abnormal luminal narrowing centred at the junction with the skull base with mural haematoma consistent with bilateral ICA dissection.

12. **Falling off the cliff: Renal resistive index as a pre-procedural predictor of acute kidney injury risk. A critical review**, Heather Venables¹, Iain Lennon², Manuch Soleimani³, ¹College of Health and Social Care University of Derby, ²University Hospitals of Derby and Burton NHS Foundation Trust, ³Electronic and Electrical Engineering, University of Bath

Doppler renal resistive index (RRI) has been established as a useful prognostic indicator for renal recovery in critical care patients with confirmed acute kidney injury (AKI). In recent years, a small number of studies have emerged that consider pre-procedural measurement of RRI as a predictor of AKI in patients following major surgery and prediction of contrast induced AKI. These findings may have significant implications for patient management prior to contrast enhanced imaging procedures, assessment of pre-procedural risk and patient counselling prior to surgical intervention.

This poster presents a critical review of relevant studies.

13. **Ectopic splenic tissue, the value of contrast enhanced ultrasound**, Ross Kruger, Simon Freeman, University Hospitals Plymouth NHS Trust, Derriford Hospital

Two forms of ectopic splenic tissue are recognised, splenosis and accessory spleens. Both are often discovered as incidental findings and commonly pose a diagnostic dilemma due to their ability to mimic more sinister pathology. As splenic tissues have a characteristic sonographic appearance when ultrasound contrast microbubbles are administered, ultrasound is a valuable tool in confirming the diagnosis. Unfortunately, it is often underused.

This poster will demonstrate a series of cases of ectopic splenic tissues and give an overview of the classical diagnostic features, paying particular attention to their sonographic appearance with contrast ultrasound.

It is hoped that the poster will help to educate the reader as to the benefits of contrast enhanced ultrasound in such cases, and how this can help to avoid investigations with an ionising radiation burden and unnecessary surgical interventions.

Background/aim:
Gangrenous cholecystitis is the most common complication of acute cholecystitis with associated high mortality rates. Clinical detection is poor due to unspecific clinical/laboratory findings. Computed tomography (CT) is the imaging gold standard for pre-surgical detection, however involves ionising radiation and delayed diagnosis. This review aim is to compare diagnostic accuracy of CEUS to cholecystectomy for detection of gangrenous cholecystitis pre-operatively.

Methodology:
A systematic search of electronically published literature identified 1,226 studies. Two studies met the inclusion criteria and one study was further identified by hand-searching reference lists of potential studies. Three studies were included for analysis. Study quality was assessed using QUADAS-2, data extraction performed then meta-analysis.

Results:
Three prospective cohort studies with a total of 233 patients were included. All studies had moderate-high methodological quality. Pooled sensitivity and specificity for contrast ultrasound was 83% (76-89% 95% CI) and 86% (77-89% 95% CI). Ultrasound diagnosed 12 false positives, 5 due to perforation, the remainder not specified. There was a total of 25 false negatives.

Conclusions:
The sensitivity and specificity of contrast ultrasound are comparable to that of computed tomography, therefore is feasible to use as a non-ionising alternative. However further research is required to determine the economical implication of departments learning a new technique.

15. Ultrasound assessment of early chronic liver disease, Pamela Parker\(^1\), Nimah M Sahib\(^2\), Louise Alcock\(^1\), Linda Sunman\(^1\), \(^1\)Ultrasound, Hull and East Yorkshire Hospitals NHS Trust, \(^2\)School of Life Sciences, Hull York Medical School,

Liver disease is an increasing problem world-wide and liver disease is the only major cause of death still increasing year-on-year. Liver disease often starts with fatty infiltration of the normal liver tissue. Left untreated this can progress to fibrosis and cirrhosis. Severe cirrhosis can lead to the development of hepatic cellular carcinoma and a very poor prognosis. Often, the process is silent, but when liver disease has developed and presents as an acute illness it has a 25-50% immediate mortality rate.

Commonly the first diagnosis of liver disease is through ultrasound imaging where the increased fat in the liver is detected. Ultrasound imaging is a relatively cheap and simple first line investigation. Significant fatty infiltration can be diagnosed. However, it can be very difficult to determine the extent of fatty infiltration and therefore the significance of this. This can lead to an under or over diagnosis of this common but potentially life changing condition. New machine technologies have helped in lesion detection but the traditional diagnostic features of the ultrasound imaging that aided diagnosis of fatty liver disease have changed these parameters. This has led to an inconsistency between ultrasound operators in their diagnosis of fatty liver disease.

The aim of this project is to evaluate the agreement between operators in the diagnosis of fatty liver disease.

25 sets of images of previously reported fatty livers have been reviewed retrospectively. 20 operators with a range of experience from 1 – 30 years have scored the images. The scores will be compared and any variability between reviews will be assessed. This poster presents the results of this local inter and intra-operator review of this common but significant finding.
16. **Analysis of A-line patterns seen on lung ultrasound scans in healthy volunteers following spontaneous breathing and high flow nasal cannula therapy**, Jing Yi Kwan¹, Wojciech Wierzejski², ¹University of Manchester, Lancashire Teaching Hospitals NHS Trust, ²Critical Care Unit, Lancashire Teaching Hospitals NHS Trust

A-lines are a type of ultrasonographic artefact seen as horizontal lines arising at regular intervals from the pleural line. The presence of A-lines can either be a variant of normality or pathological conditions like pneumothorax. Currently, there is a lack of guidelines and recommendation about the usage of A-lines analysis in the diagnosis and monitoring of respiratory conditions. This study is designed to determine whether hyperinflation of the lungs results in a difference in the number and echogenicity of A-line artefacts on lung ultrasound scans.

We performed a prospective before-and-after trial on 37 healthy volunteers. Lung ultrasound scans were performed before and right after 15 minutes of high-flow nasal cannula (HFNC) air therapy, which was used to increase the end-expiratory volume of the lungs to create a state of hyperinflation. Two variables were analysed: the number and echogenicity of A-line artefacts.

Changes in the number of A-line artefacts before and after HFNC were analysed using a paired t-test. Out of 37 healthy participants, 28 showed a significant increase in the number of A-lines [1.27, 95% CI 0.82 to 1.72, P< 0.0001] after 15 minutes of HFNC. Conversely, a majority 51.4% of participants (19 participants) showed no changes in echogenicity. However, a two-sided P value of P=0.0127 (P<0.05) obtained using a sign test indicates that if there is any change, it is more likely to be an increase in echogenicity.

Since hyperinflation of the lungs results in a significant increase in the number of A-lines, lung ultrasonography has the potential to be used as a point of care tool for the monitoring of the degree of inflation of the lungs, and thus the severity of Chronic Obstructive Pulmonary Disease (COPD) and asthma attacks. It can also be used in the monitoring of mechanical ventilation and prevention of ventilator-induced lung injury (VILI).

17. **Classifying ovarian masses using IOTA – A retrospective study**, Carlene Veasey, Catherine Kirkpatrick, Radiology, United Lincolnshire Hospitals NHS Trust

Background:
Management pathways for ovarian masses can be complex and differ greatly from patient to patient. Description of an ovarian mass in an ultrasound report is often lengthy and superfluous providing no clear direction to the Consultant Gynaecologist or the Multi-disciplinary Team.

Currently NICE state “There is currently not enough evidence to recommend the routine adoption of the IOTA ADNEX model, Overa (MIA2G), RMI I (at thresholds other than 200 or 250), ROMA or IOTA Simple Rules in secondary care in the NHS to help decide whether to refer people with suspected ovarian cancer to a specialist multidisciplinary team (MDT)”. NICE indicates that the IOTA simple rules and descriptors show promise but more research is required on test accuracy and the impact of test results on clinical decision making.

Method:
Retrospective Audit. Computed Radiology Information System (CRIS) search using the key words ‘ovarian mass’, ‘ovarian malignancy’, ‘ovarian tumour’ over a 2 year period.

Returned 215 results. Comparison between the IOTA classification and histology performed.

Results:
94 ovarian masses suitable for retrospective IOTA classification. Simple descriptors could be used for 5 cases.

4 cases excluded from the study. Remaining 85 cases were classified using IOTA simple rules.

2 experienced Sonographers reviewed cases and classified the ovarian masses using the IOTA guidelines.

n=84 correct classification; of the n=84 (11 unclassified = benign and 1 unclassified = malignant. n=1 classified malignant= benign at histology.
Conclusion:
Small sample size, overall encouraging results.

Simple rules/descriptors should help us report in a systematic way. Allows for a more consistent, useful style of the ultrasound report.

Aids the pre-operative characterisation of adnexal masses which in turn determines the appropriate patient management. Subjective and operator dependent. Expertise is required.

18. **Predicting endometriosis with transvaginal ultrasound**, Rachel Wilkins, Ultrasound Cambridge University Hospitals NHS Trust

Ovarian endometriomas are the most common feature of endometriosis identified on transvaginal ultrasound (TVUS). However, identifying additional features associated with endometriosis can improve prediction and with adequate training diagnostic accuracy with TVUS can be achieved. This poster examines various ultrasound features and techniques that can be used to diagnose endometriosis with ultrasound, including ‘soft markers’.

19. **What is the diagnostic accuracy of 3D ultrasound in comparison to MRI for uterine anomalies?**, Sally-Anne Jones¹, Jane Arezina², ¹Medical Imaging Medical Physics, Sheffield Teaching Hospitals, ²School of Medicine, University of Leeds

Introduction:
Congenital uterine anomalies (UAs) have a higher incidence in women with infertility or recurrent miscarriage with septate uteri associated with the poorest outcomes (Grimbizis et al., 2016). The lack of a standardised approach for diagnosing and classifying UAs has been widely recognised with examinations including two-dimensional ultrasound (2D US), three-dimensional ultrasound (3D US), hysterosalpingography (HSG), magnetic resonance imaging (MRI) and laparoscopy/hysteroscopy (Saravelos et al., 2008). The aim of the review was to determine the accuracy of 3D US in comparison with MRI, the current imaging gold standard, in the characterisation of uterine anomalies.

Methodology:
Studies performed after 2006 were identified using a comprehensive Ovid search.

Results:
Comparison of 3D US and MRI with hysteroscopy/laparoscopy as the reference standard identifies the most accurate procedure for the characterisation of UAs is 3D US with an accuracy of 97.2% to 96% compared with 91.6% to 79% achieved by MRI using the American Fertility Society (1988) classification. Comparison of 3D US against MRI diagnosis alone demonstrates good strength of agreement (0.878 95% CI, 0.775-0.980) using the AFS classification and associated anomalies. Using the European Society of Human Reproduction and Embryology-European Society for Gynaecological Endoscopy (ESHRE-ESGE) (Grimbizis et al., 2013) reported sensitivity of 3D US ranged from 83.3 to 100%, specificities of 88.9 to 100%, positive predictive value (PPV) of 95.5 to 100% and negative predictive value (NPV) of 98.2 and 100%.

Conclusions:
The accuracy of 3D US in the characterisation of UAs is superior to MRI. Findings of this review support the recommendation that 3D US should be a necessary step to investigate UAs to achieve a definitive diagnosis, eliminating the need for further investigation in the majority of cases. However, a universally agreed classification system incorporating all variations and offers clear descriptions to facilitate diagnosis and treatment planning is urgently required.
20. **Endometrial thickness - Is there an optimum cut-off value in postmenopausal women with bleeding?**, Milly Boulas, University of Derby

Background:
Endometrial cancer (EC) is the 4th most common gynaecological cancer in the UK. More than 90% of patients with EC present with vaginal bleeding. Transvaginal ultrasound examination, which allows close range magnification and high resolution imaging, is routinely performed as part of a pelvic ultrasound assessment and is the first approach in evaluating a postmenopausal woman (PMW) with an initial episode of bleeding. There have been debates in the literatures on the optimal endometrial threshold separating normal form abnormally thickened endometrium, ranging from 3-5mm. The objective of this literature review was to explore an optimal endometrial thickness cut-off value in non-medicated patients with postmenopausal bleeding for the detection of EC.

Method:
A literature search of published articles using the University of Derby digital databases was performed to identify articles reporting on EC and endometrial thickness measurements in women with postmenopausal bleeding. Two retrospective studies and a prospective case-control study were reviewed with consideration given to their sample sizes, methodology and the use of statistical analysis.

Results:
Endometrial thickness was significantly higher in women with EC than without in all three studies. The study with the largest sample size recommends a cut-off value of 5mm in symptomatic women with postmenopausal bleeding with a sensitivity of 80.5% and a specificity of 85%. A threshold of 3mm provides a high sensitive for the diagnosis of EC. However such a low cut-off value could raise false positive results and can also increase anxiety levels in patients.

Conclusion:
There is a correlation between thickened endometrium and endometrial cancer. There is no cut off-value that can reliably exclude the presence of EC. Asymptomatic women may have the disease present and it is a factor which cannot be accounted for. However, malignant disease has been reported in endometrium as thin as < 1mm.

21. **Transvaginal ultrasound: Beware the cervical cancer**, Harriet Bowles, Peter Cantin, Ann MM Jones, University Hospitals Plymouth NHS Trust, Derriford Hospital

Cervical cancer is a preventable disease; around 3000 cases are diagnosed each year in the UK. Approximately 75% of cervical carcinomas are diagnosed following an abnormal cervical smear, with subsequent clinical examination and biopsy. However, with the advent of one-stop clinics for abnormal per vaginal bleeding, patients can present for a transvaginal ultrasound (TVS) prior to clinical examination, and a recent smear may not have necessarily been performed.

When performing TVS for abnormal bleeding, the sonographer is correctly concentrating on the endometrial appearances, which will not be apparent clinically. However, cervical abnormalities should not be overlooked.

We propose that it is of paramount importance to ensure that the cervix is routinely adequately imaged on all pelvic ultrasounds (both transabdominal or transvaginal) for all clinical presentations. The sonographer should be aware of assessment of the cervix, and be familiar with the normal appearances, as well as the ultrasound findings in the context of carcinoma of the cervix. The reporter should then be able to signpost the referrer to the next appropriate step in investigation.

We present the normal appearances of the cervix on TVS and four cases of histology-proven carcinoma of the cervix, three with initial presentation at ultrasound. Two cases were thought to have endocervical polyps, the third was suspected on ultrasound and the fourth seen in retrospect on ultrasound. Transvaginal ultrasound and MRI images are demonstrated to illustrate both normality and the varying appearances of cervical cancer.

22. **A day in the life of a fertility sonographer**, Anne Hurleston, Ultrasound Manchester Fertility Services

Background:
The role of the Sonographer in a dedicated Fertility Clinic discussion around the variety of scans as well as the emotional support to the patient and their family.
The aim is to help sonographers based in hospitals without Fertility Units but who receive scan referrals from General Practitioners or Gynaecologists for patients with fertility issues and to give an insight into the journey a patient has experienced prior to their dating and anomaly obstetric scans.

Discussion:
Baseline Gynaecological Scan: Baseline trans-vaginal 2D and 3D ultrasound scan to ascertain a normal uterus and ovaries along with an antral follicle count (follicles between 2mm-10mm). The scan findings should correlate with the stage of the patient’s cycle and exclude pathologies.

Treatment Scans:
Scan to monitor ovarian follicles with 3D technology.
Monitoring endometrial thickness and the role ultrasound has to play in the thin endometrium by assessing the Resistive Index of the uterine arteries.

Embryo Transfer Scans:
The role of the sonographer as the patient prepares for an embryo transfer, the emotional support as well as trans-abdominal scanning to assist the transfer of the embryo by the Gynaecologist.

Pregnancy Scans:
The highs and lows of the early pregnancy scan usually performed around 7 weeks gestation.

Non-Invasive Prenatal Testing:
Trans-abdominal scans performed after 10 weeks gestation prior to a blood test.

The Male Patient:
Ultrasound assessment of the testes to exclude testicular masses, abnormal vascularity and varicocele in the Andrology Department.

Case Reports:
Images include examples of 3D colour antral follicle count of an ovary, 3D colour view of a stimulated ovary and subsequent report graph. Images of 3D endometrial cavities including anomalies

23. **Pitfalls of female pelvic ultrasound imaging. Is it really what you think it looks like?**, Caro Dames, University Hospitals Plymouth NHS Trust, Derriford Hospital

Ultrasound imaging is a key diagnostic tool of modern clinical diagnosis. It is also an important source of diagnostic errors that can have a major impact in patients’ management and treatment. Is the anechoic structure with thin walls actually the bladder or is it an ovarian cyst that needs drainage? Are there echoes or septa in the fluid filled structure? Is it sinister or a benign structure? It is easy to convince yourself a structure is a particular structure because it is where you expect it to be and the sonographic appearance is as you would expect for the structure. We would like to demonstrate some of the near misses we have experienced when performing pelvic gynaecological ultrasound and by doing this provide a reminder of how certain structures can have similar sonographic appearance. The miss misdiagnose or incorrect diagnosis of certain structures can have a significant impact on a patient’s morbidity and mortality.
24. **3D TV ultrasound congenital uterine anomalies**, Rebecca Chambers, Ultrasound Manchester Fertility

Transabdominal (TA) and transvaginal (TV) ultrasound is the routine imaging modality of choice for assessing the female pelvis. The advent of three-dimensional TV ultrasound in gynaecological examinations is proving a useful adjunct when assessing the female pelvis. Congenital uterine anomalies affect 3–8% of women. These anomalies are not typically associated with infertility but are associated with adverse reproductive outcomes such as pregnancy loss and preterm delivery. Three-dimensional transvaginal ultrasound of the uterine cavity is extremely accurate in diagnosing and classifying anomalies. In current practice, the most universally recognised classifications systems for uterine anomalies are the ESHRE/ESGE and AFS classifications.

The aim of this poster is to demonstrate three-dimensional TV ultrasound appearances of congenital uterine anomalies.

Head and Neck

25. **The role of elastography in the assessment of thyroid nodules and its future direction**, Jake Wheater, Ultrasound, Radiology York Teaching Hospital NHS Trust

Ultrasound (US) assessment of the thyroid is becoming increasingly in demand, with the prevalence of thyroid nodules being estimated at 67% of the population\(^1\). Currently, US assessment through B-mode scanning with a view to fine-needle aspiration biopsy (FNAB) is considered the gold standard in thyroid nodule characterisation\(^9\). However, the non-invasive evaluation of tissue stiffness through elastographic assessment is trying to change this. Several studies have shown elastography to have a significant role in the accurate discrimination of benign lesions from malignant\(^5,7,8\), allowing for both quantifiable and qualitative thyroid nodule assessment. High sensitivity and specificity values of 98.5% and 99.8% respectively, have been noted when elastography is combined with B-mode US, suggesting a potential decrease in the need for FNAB of up to 34%\(^2,4\). Nevertheless, utilisation of elastography to guide FNAB to increase cytopathological effectiveness has also been documented as a step forward. The role of thyroid elastography may also be extended into a surveillance capacity for negative FNAB nodules\(^3\). Future advances should include establishing a solid role for elastography in a clinical setting, and that of uniform standardisation of an elastography grading criteria by way of converting B-mode and elastographic results into an estimate of malignant risk. This work aims to demonstrate the current and future role of elastography in the assessment of thyroid nodules.

26. Evaluation of thyroid nodules – review of agreement between U grade and TI-RADS scoring tools in a single ultrasound unit, Petra Williams¹, Peter Cantin¹, ¹University Hospital Plymouth NHS Trust, Derriford Hospital

Background and purpose:
BTA guidelines recommend use of U grade for evaluation of thyroid nodules.

An initial department review had been performed of 50 thyroid ultrasound studies where thyroid nodules were assessed, looking at the reporting styles. This identified that rather than consistent use of the U grade, there was a broad range of reporting styles, with most reporters using a descriptive approach and occasional use of U grade by some reporters. 2 reporters occasionally used the TI-RADS scoring system. To provide more consistent reports for referring clinicians, this study sought to assess the level of agreement between the U grade and TI-RADS tools by our reporters, and to assess inter-observer agreement for each tool and agreement between tools.

Methods:
8 experienced reviewers independently assessed the same images of 10 thyroid lesions and provided a U and TI-RADS score based on that imaging. Intra-class correlation was used to assess agreement between reviewers. Kappa analysis was used to assess agreement between scoring systems.

Results:
There was a high degree of agreement between raters using both the U grading (ICC 0.7. 95th CI:0.48-0.89) and TI-RADS scoring systems (ICC 0.75. 95th CI=0.55-0.91). There was no significant difference in inter-rater agreement between the scoring systems. There was also a high degree of agreement between the U and TI-RADS scoring systems (K=0.84; SE=0.14).

Conclusion:
There is a high degree of inter-rater agreement in use of both the U and TI-RADS scoring systems. There is also good agreement between the U and TI-RADS scoring systems. There is no evidence in our department to promote one scoring system over another. Individual ultrasound units should agree a single scoring system by consensus with their surgical colleagues.

27. The role of ultrasound in a diagnostically challenging case of tuberculosis cervical lymphadenitis, Sandra Hopkins¹,², Clodagh Curran², Kevin Cronin, ¹University College Dublin, School of Medicine, ²Our Lady of Lourdes Hospital Drogheda

Background:
Tuberculosis Cervical Lymphadenopathy (TCL) is the most common extrapulmonary presentation of tuberculosis. The treatment of TB is burdensome and prolonged so a definitive diagnosis or a very strong index of suspicion is needed to warrant commencement of treatment.

On initial presentation the patient had no history or clinical features other than an intermittent unifocal neck swelling to raise a suspicion of TCL. Initial imaging was inconclusive for cause of the swelling, antibiotic therapy was provided and the swelling subsided.

On second presentation the ultrasound identified features consistent with TCL and along with ultrasound guided biopsy aided diagnosis.

Ultrasound Findings:
B-mode and colour Doppler scanning were used to characterise the swelling. The initial ultrasound(US) identified an avascular predominantly hypoechoic lesion with a couple of hyperechoic internal flecks. A pharyngeal pouch was considered a possibility but was ruled out on contrast enhanced CT (CECT). Retrospectively the appearances could be equated to Stage 3 TCL and the formation of a TCL cold abscess.

On 2nd presentation the ultrasound features were classic for ‘Collar Stud’ cold abscess (Stage 4 TCL) and contained bright flecks of hyalinosis within the caseous contents of the collection and an echogenic wall due to granulomatous inflammation, all highly indicative of TCL.

The TCL reached Stage 5 and sinused to the surface whilst the patient was awaiting US guided biopsy. The lesion retained the ‘Collar Stud’ outline but appeared more homogenously hypoechoic at time of biopsy due to the prior discharge of the caseous contents through the sinus.
Conclusion:
The unifocal nature of this case of TCL and the timing of the initial presentation did not yield ultrasound findings highly specific for the TCL. However, the second ultrasound characterised the lesion as highly suspicious for TCL (Stage 4) and prompted the US guided biopsy for confirmation of the diagnosis.

MSK

28. **Sonographic assessment of calcific deposit volume in rotator cuff calcific tendinosis - a reliable, accurate and non-invasive technique**, Gabriel Constantinescu, Radiology, Kings College Hospital NHS Foundation Trust

Aim:
To accurately determine calcific deposit volumes in the rotator cuff tendons (RCT), in order to plan radiological based therapeutic intervention.

Material and methods:
Upon initial plain film assessment, sonographic evaluation of the calcific deposits (CDep) was performed.

31 (n=21) consecutive patients, with CDep in the RCT, detected on plain films, were referred for radiological therapeutic intervention, within a 1-year interval.

23 (m=23) female patients and 8 (n=8) male patients were included in the study cohort. The age range was 33 to 71 years with a median age of 52.

3 dedicated MSK Radiologists assessed the patient’s calcific deposits volume with High Resolution Ultrasound, to determine the best treatment option (barbotage, fenestration or a combination of both).

Results:
Sonographic evaluation of the CDep in the RCT reveals a constant plain film underestimation of the deposit size, in all of our patients.

In two patients (k=2), CDep suspicion on x-rays was sonographically confirmed.

The measured difference in two-axis determination of the CDep varies from 3mm to 5 mm (mean value of 4 mm), with a projected volume underestimation differential of at least 3.9mm.

Conclusion:
Sonographic assessment of CDep in the RCT is accurate, non-invasive and rapid.

It has significant advantages over plain films (underestimate CDep).

CT (invasive) and MR (lengthy, non-reliable) and allows one stop Radiological Intervention.

29. **Ultrasound of full-thickness tears in the supraspinatus tendon: Does patient position affect tear size?**, Samantha O’Herlihy, Peterborough Ultrasound Department, Peterborough City Hospital, North West Anglia Trust

Objective:
As Ultrasound is now the primary investigation in the assessment of shoulder rotator cuff tendons, it was decided to see how patient positioning may affect the measurements obtained when assessing a supraspinatus tear.

In the assessment of the Supraspinatus tendon two positions are used - the Crass and Modified crass position. (photo diagram will illustrate this). Looking at Supraspinatus tears using both these positions this study will compare and determine whether there is any significant difference in the measurements obtained.
Method:
Thirty-five patients had an ultrasound of their rotator cuff tendons on either the Rt or Lt shoulder. An assessment of the supraspinatus tendon was made using both the Crass and Modified Crass position. If any tears were diagnosed, measurements in both positions were taken in both sagittal and transverse planes.

Results:
Fifteen patients from the cohort demonstrated either a complete full thickness tear or an incomplete full thickness tear of the supraspinatus tendon. No significant difference was seen between the size of the tears in the Crass position or the modified Crass position in the transverse plane, however a slight difference was noted between the Crass and modified crass position in the sagittal plane, where the tear was seen to measure larger with the modified Crass position.

Conclusion:
Ultrasound reliably detects Supraspinatus tears. Both the Crass and modified Crass positioning are used in the assessment of the tendon but which position used can vary from sonographer to sonographer, although the modified Crass position is deemed as more reproducible. However as measurements of supraspinatus tears are seen to vary between both positions in the sagittal plane further studies would be to look at how this may affect the management of a patient and to compare results with surgical findings to decifer which position gives the most accurate result.

Obstetrics

30. The inconspicuous and the obvious: Spontaneous heterotopic pregnancies, Valerie Kinsella, Valerie Spillane, Peter McParland, National Maternity Hospital, Dublin

Objective:
Heterotopic pregnancy is a rare condition, more commonly seen in populations at risk for ectopic pregnancy or those undergoing fertility treatments compared with spontaneous conceptions. Heterotopic pregnancy is the simultaneous coexistence of an intrauterine and an extrauterine gestation (Chadee et al., 2016). Duverney was the first to report heterotopic pregnancy, in 1708, after finding an intrauterine pregnancy during the autopsy of a woman who had died from a ruptured ectopic pregnancy (Avery et al., 2009). By 1970, <500 cases had been reported (Smith et al., 1970). The incidence for heterotopic pregnancy is calculated using the incidence of fraternal twins and of ectopic pregnancy and multiplying both. The incidence of a heterotopic pregnancy is 1:30,000 pregnancies (Kirk et al., 2013), and increases with the use of assisted reproductive treatment. The objective of this abstract is to demonstrate the increasing frequency of these pregnancies at our hospital.

Methods:
A case series review of heterotopic and abdominal pregnancies over a 12-month period in our hospital.

Results:
In our hospital there were 8433 births in 2017 and the number of heterotopic pregnancies were 5 giving an incidence of 0.06% and there was 1 abdominal ectopic pregnancy 0.01%. Of note all of these were spontaneous pregnancies.

Conclusion:
Abdominal and heterotopic pregnancies appear to be increasing in frequency, and the incidence of heterotopic pregnancy is thought to be about 1 in 2,600 pregnancies annually; primarily because of assisted reproduction (Crabtree et al., 1994). These up-to-date figures of occurrence would better reflect the experience in our ultrasound department and the idea of it being an exceptional finding is no longer the case. The diagnosis of a heterotopic pregnancy can be difficult and may be delayed until follow-up ultrasound scans are performed. The use of serial βhCG is redundant in these cases (Avery et al., 2009). It is imperative that there is precise ultrasound examination of the adnexae and Pouch of Douglas even in the presence of a normal intrauterine pregnancy (Skrajna et al., 2012). To improve the detection of heterotopic pregnancy, a high-resolution transvaginal transducer should be used, the technique must be meticulous, and the examination performed by an experienced sonographer.
31. **Cervical assessment – the unusual and unexpected**, Ellen Dyer, Ultrasound Rosie Hospital, Cambridge

Cervical assessment is a key part of the screening of high-risk women for preterm birth. In 2015 NICE recommended that high-risk women with a cervical length of less than 25mm should be offered prophylactic treatment of either progesterone or cervical cerclage to prevent preterm birth. In May 2017 the Rosie Hospital, Cambridge, established a dedicated Preterm Surveillance Clinic for high-risk women. During the first year we have had some unusual and unexpected ultrasound findings. Current literature describes well the standardise technique for cervical length assessment of the typical cervix but there is little published literature about more unusual cervical ultrasound appearances.

The aim of this pictorial review is to increase awareness of unusual cervical ultrasound appearances which can make cervical assessment more difficult, these include:

- Asymmetry of the cervix caused by LLETZ (Large loop excision of the transformation zone)
- Full dilation Cesarean section scar
- Uterine didelphis with ‘double cervix’
- Low uterine contraction
- Endocervical polyp
- Vasa previa
- Placenta previa

Awareness of these more unusual cervical ultrasound appearances along with good technique will enable accurate cervical assessment and appropriate management of women.

32. **Prenatal diagnosis of Walker-Warburg Syndrome**, Rebecca Rice¹, Mary Moran², Valerie Spillane¹, ¹Fetal Assessment Unit National Maternity Hospital, Dublin, Ireland, ²School of Diagnostic Imaging University College Dublin, Ireland

Background:
Dandy Walker Malformation (DWM) encompasses a spectrum of abnormalities, not limited to absence/abnormality of the cerebellar vermis, dilatation of the third and fourth ventricles and enlargement of the cisterna magna. It is associated with profound cognitive and developmental impairments.

Case Report:
A 24 year old attended for a routine anatomy scan at 20 weeks gestation. She already had a healthy child and her pregnancy so far had been uncomplicated. The anatomy examination showed significant brain anomalies, namely severe bilateral ventriculomegaly of 16mm and an absent cerebellar vermis. These findings were later confirmed by a fetal medicine specialist and a provisional diagnosis of DWM made. A further ultrasound examination showed worsening ventriculomegaly of 23mm and anterior ventriculomegaly. The absent cerebellar vermis appeared more pronounced with increased cisterna magna dilatation. MR examination showed a Z-shaped brainstem, small vermis, occipital encephalocele and asymmetric orbital globes. These findings, along with the deterioration of the brain structures on subsequent ultrasound examinations, gave rise to a more accurate diagnosis of Walker Warburg Malformation, a lethal autosomal recessive genetic disorder, the most severe in a group of congenital muscular dystrophy conditions effecting 1:100,000 live births.

After consultation with a paediatric neurosurgeon and geneticist, along with worsening deterioration again on further ultrasound examinations, the couple were prepared for the likelihood of neonatal death or a profoundly dependent child. The parents declined pre-natal testing but opted for a post-mortem when the infant died at three months of age. The post-mortem confirmed the prenatal findings.

Discussion:
Whilst the outcome of this case could not have been changed, the pre-natal diagnosis prepared the parents and the multi-disciplinary teams caring for them of an adverse outcome. Also as Walker Warburg has a high recurrence rate of 1:4, the couple were also counselled on recurrence in subsequent pregnancies.
33. Challenges in the diagnosis of secondary abdominal pregnancy - unusual presentation with anhydramnios, Siewchee Wong, Gillian Coleman, Amita Mahendru, Obstetrics Nottingham University Hospital NHS Trust, Fetal Medicine Nottingham University Hospitals NHS Trust

Background:
Abdominal pregnancy is a rare form of ectopic pregnancy associated with higher maternal mortality rate than tubal ectopic pregnancies. Ruptured rudimentary horn pregnancy is one of the rarest forms encountered and this case highlights the challenges encountered in dealing with it.

Case Report
A lady presented to fetal medicine in her second pregnancy with anhydramnios at 19+5 weeks gestation, with normal fetal kidneys and bladder. She had one previous emergency caesarean section for footling breech, and the intraoperative notes at that time suggested evidence of bicornuate uterus, with the pregnancy in the right horn. Throughout third trimester in this pregnancy, she reported persistent lower abdominal pain and MRI at 30 weeks reported didelphic uterus, with fetus noted in the left horn and possible tracking of fluid outside the uterus. This led to the concern of possible scar dehiscence or possible rudimentary horn pregnancy. In view of this, a planned caesarean section was carried out at 32 weeks that led to the diagnosis of abdominal pregnancy. A unicornuate uterus with only right ovary and tube was noted intraoperatively. The baby was diagnosed with bilateral congenital hip dislocation requiring surgery but was otherwise well. Placental histology confirmed the presence of myometrium, salpinx and ovary in keeping with ruptured rudimentary horn pregnancy.

Discussion:
Undiagnosed ruptured rudimentary horn pregnancy in unicornuate uterus is a very rare cause amongst the various causes of secondary abdominal pregnancy. In spite of advances in ultrasound imaging and MRI, these cases are still seen. Even if diagnosed antenatally, counselling and management is difficult in the presence of a live extrauterine pregnancy.

Conclusion:
Careful assessments of fetus, uterus and adnexa in early pregnancy in cases with uterine anomalies and developing expertise in the use of MRI may enable early diagnosis in these challenging situations.

34. Sonographer perspectives of breaking bad news in early pregnancy assessment – A literature review, Leigh Cassels-Gibson, Imaging University Hospitals of Leicester NHS Trust

The National Bereavement Care Pathway (NBCP) is being rolled out across NHS Trusts with the aim of improving bereavement care for patients after pregnancy or baby loss. It aims to improve training and support for staff that are breaking bad news; this will include sonographers. The aim of this literature review was to obtain data on the experiences and subsequent impact on sonographers in relation to breaking news of pregnancy loss. The findings will contribute to improving patient experience by focusing on providing effective practice protocols, support and training to sonographers and assistants.

Relevant literature was obtained following a systematic literature search. Three studies were reviewed with cohorts ranging from 10 to 92 sonographers. All studies asked sonographers how they felt about breaking bad news, the support they felt they had and the training received in relation to breaking bad news.

Arezina (2017) highlighted that training methods used most commonly were the least preferred and vice versa. Thomas et al (2017) indicated that inconsistent protocols had a negative impact and highlighted potential stressors such as lack of prior knowledge of the patient, risk of complaint, feelings of guilt. Simpson et al (2001) suggested that formal training on counselling skills would increase the sonographers’ confidence and if they could recognise their own psychosocial needs, they would be better equipped to recognise the needs of others. Simpson et al (2001) also highlighted that ‘bad’ news has a different meaning for everyone.

In the three studies there are common themes; inconsistency in practice protocols (if available), lack of formalised training, lack of support, frustration and stress. The NBCP provides a framework for supporting sonographers and assistants, which will lead to an overall improvement in patient and staff experience of pregnancy loss.
35. Placental Mesenchymal Dysplasia, Kay Hodge, Alison McGuinness, Ultrasound Mid Yorkshire Hospitals NHS Trust

Background:
Placental mesenchymal dysplasia (PMD) is a rare, benign condition that is characterised by enlargement of the placenta with multiple bunch of grape-like vesicles that can resemble a molar pregnancy by ultrasound and gross pathologic examination (1).

Case Report:
A 29-year-old female (Gravida 3 Para 1) presented for a routine dating scan at 12 weeks 6 days gestation. A single live fetus was seen and also an enlarged cystic placenta. This was reported as a possible partial molar pregnancy with a live coexisting fetus. Following the scan, a referral was made to the Trust’s Early Pregnancy Unit (EPU). She was seen the following day and a subsequent referral was made to the Tertiary Referral Centre. The anomaly scan was performed at 20 weeks 1-day gestation and again the cystic placenta was noted. During the pregnancy there were multiple admittances for PV bleeding and reduced fetal movements, subsequent antenatal care was taken over by the Tertiary Referral Centre.

At 32 weeks 5 days gestation a live male fetus was delivered by elective Caesarian section. He was admitted to the neonatal unit following delivery. The patient underwent a total hysterectomy immediately following delivery due to massive post-partum haemorrhage and was admitted to the Intensive Care Unit.

Histopathology of the placenta described a ‘pathologically large (1613g) preterm placenta with mesenchymal dysplasia and secondary chronic fetal malperfusion’.

Discussion:
PMD is a rare disorder that is estimated to occur in 0.02% of pregnancies (2). ‘It is probably under-diagnosed as it is an unfamiliar clinical entity and also mistaken for gestational trophoblastic disease because of similar sonographic findings of the two entities’ (3). However ‘Unlike molar PMD co-exists with viable fetuses’ (4).

References:
1. (Dr Daniel J Bell and Dr Amir Rezaee et al.. 2018. placental-mesenchymal-dysplasia. [ONLINE] Available at: https://radiopaedia.org. [Accessed 16 July 2018].)
4. Havva Serap Toru1, Esra Çobankent Aytekin1, et al. We can Diagnose it if we Consider it. Diagnostic Pitfall for Placenta: Placental Mesenchymal Dysplasia. Turkish Journal of Pathology. 2018; 34:1: 100-103
36. **Paediatric thyroid lesions**, Thomas Davies, Karis McFeely, Judith Foster, Radiology Plymouth University Hospitals Trust

Ultrasound evaluation plays an integral part in the diagnosis and subsequent management of thyroid lesions in children. Paediatric thyroid scanning can be a daunting prospect. This poster provides a pictorial review of the ultrasound appearances of common paediatric thyroid lesions and their diagnostic features.

The spectrum of paediatric thyroid lesions is wide. Broadly, they can be split into acquired and congenital causes of disease. An understanding of the embryogenesis, anatomy and function of the thyroid gland is important for accurate diagnosis.

Acquired paediatric thyroid lesions arise following completed thyroid development. They differ from those encountered in the adult population in several ways. They are relatively rare, affecting 1% - 2% of this population, and the risk of thyroid cancer is significantly higher than in adults. Cases to be presented include papillary cancers, intermediate lesions and thyroiditis. Certain ultrasound features and patterns can lead to confident categorisation into a benign or malignant process. An intermediate group with both benign and malignant characteristics also exists and it is important to identify these as they will require further investigation and assessment.

Congenital paediatric thyroid lesions arise from anomalous thyroid development. Cases to be presented include thyroglossal cysts. They are the most common congenital cystic neck mass, and arise from failure of thyroglossal duct involution during foetal development. They can be associated with ectopic thyroid tissue and have characteristic ultrasound appearances.

Accurate and timely assessment of the paediatric thyroid lesion is essential for safe and effective management. This poster aims to build the confidence of those performing paediatric thyroid ultrasound using case based examples.

37. **Ultrasound assessment of the groin in children**, Aarushi Gangahar\(^1\,2\), Kate Kingston\(^1\), 1Radiology Department, York Teaching Hospital NHS Foundation Trust, 2Leeds Radiology Academy

The dynamic, real time capabilities of ultrasound are particularly useful in evaluation of the groin region. Our DGH department is receiving an increasing number of requests from paediatricians, ED and GPs for ultrasound(US) of the groin, with three main categories of referral: a palpable swelling or lump in groin or scrotum; to answer a specific question in relation to an episode of MSK trauma or to attempt to establish a cause in a child presenting with a limp or non-specific pain.

Although scan technique for the groin is similar in adults and children, the anatomy of the joints and cartilaginous enthyses may be unfamiliar and changes over a relatively short period of time as the cartilage progressively ossifies. Congenital and developmental lesions such as patent processus, undescended or malpositioned testes are more likely to be encountered. Young children may not accurately localise or communicate the site of their symptoms, requiring a greater flexibility of approach. Our pictorial discussion will describe the approach used in our department, focussing on anatomy, probe position and ultrasound technique and how to vary the examination according to the indication in order to examine the hip joint, musculo-tendinous attachments, hernial orifices or palpable lumps. We will show normal anatomy and avulsion injuries, discuss Valsalva techniques and various types of groin hernia and inguinoscrotal developmental abnormalities and how to distinguish them. Space permitting we will include some of the wide spectrum of groin lumps and bumps encountered in a DGH setting.

Ultrasound is excellent for the examination of the groin in children. Scan technique can often be tailored to the specific question being asked, but with young children presenting with non-specific symptoms a more structured approach may be required.

38. **Ultrasound of ambiguous genitalia: Challenges and pitfalls**, Susan Watts, Allison Harris, Tom Watson, Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust

An ultrasound scan is an essential imaging tool in the initial assessment of an infant or child presenting with ambiguous genitalia (Ahmed et al, 2016). Within this poster presentation the authors will explore the background to the many different and complex appearances arising from this condition. Case studies will illustrate the varied ultrasound findings encountered in the spectrum of disorders of sex development (DSD) with genetic correlation which is an essential component of the patient pathway for gender assignment (Trust protocols, 2018). Sometimes the appearances are confusing and may mean that a follow up scan or further imaging is needed, delaying diagnosis and
decision making (Trust protocols, 2018). A multidisciplinary team approach is vital to ensure that the family understand the limitations of the ultrasound and that anatomical presence does not indicate normal function.

References:

39. Making use of the mastoid fontanelle: Additional views in neonatal intracranial ultrasound imaging, Sophie McGlade¹, Peter Cantin², Judith Foster², ¹Peninsula Radiology Academy, University Hospitals Plymouth NHS Trust, Derriford Hospital

Ultrasound is widely used for examination of the brain in neonates. It has particular value for screening and follow-up in those at high risk of intracerebral haemorrhage, for detection of ischaemic or haemorrhagic brain injury as well as detection of structural abnormalities or conditions such as hydrocephalus.

Routine intracranial ultrasound examination takes advantage of the anterior fontanelle prior to its ossification at around 6-9 months of age in normality. Sagittal and coronal images from this acoustic window are usually obtained, however, views of the infratentorial posterior fossa structures such as the cerebellum may be limited. Thus alternative acoustic windows such as the posterior fontanelle or mastoid fontanelle may need to be used.

This poster focuses on the use of the mastoid fontanelle, which has particular value in detecting haemorrhage involving the cerebellum, brainstem and subarachnoid cisterns. Views through the mastoid fontanelle are not universally obtained as part of a standard examination and this poster aims to highlight particular benefits of incorporating this approach, describe good sonographic technique, demonstrate anatomical structures which may be appreciated on a normal study, and introduce common or important pathological appearances where this approach has been utilised.

40. Ultrasound diagnosis of neonatal intra-abdominal cysts: An educational pictorial essay, Eu Leong Harvey Teo, Diagnostic Imaging and Intervention KK Women’s and Children’s Hospital, Singapore

An ultrasound is the modality of choice to confirm and further characterize an antenatally-detected cyst during the post-natal period. Common differential diagnoses include multicystic-dysplastic kidneys, hydronephrotic kidneys, ovarian cysts, mesenteric cysts, enteric-duplication cysts, meconium pseudocysts, lymphangiomas and less frequently cystic neuroblastomas, adrenal haemorrhage, liver haemangioendothe liomas and teratomas. In many cases ultrasound is able to specifically diagnose the cyst based on its location and imaging characteristics. Plain radiographs, CT and MRI may be needed in some cases to further characterize these lesions should ultrasound not be able to diagnose the lesion. The objectives of this educational pictorial essay are firstly to highlight the ultrasound spectrum of intra-abdominal neonatal cysts; secondly, to show how the further use of other imaging modalities is able to help the Radiologist further characterize these cysts and to provide a specific or narrower differential diagnosis and thirdly to show how patient care is improved by guiding the next appropriate step in management. Correlative surgical and pathological images will be shown where available. After reviewing this poster, the reader should be familiar with the imaging features of the different intra-abdominal cysts in the neonate and how to accurately diagnose many of these lesions on ultrasound.

41. Ultrasound of the inguinal canal in children: A pictorial essay, Eu Leong Harvey Teo, Diagnostic Imaging and Intervention KK Women’s and Children’s Hospital, Singapore

Learning Objectives:
To illustrate the anatomy of the inguinal canal on ultrasound.
To familiarize the reader with pathologies that may be encountered in the paediatric inguinal canal.
Background:
The inguinal canal is a passage that extends inferiorly and medially through the inferior part of the abdominal wall. The spermatic cord in males and the round ligament in females pass through the canal. The patent processus vaginalis (PV) is an embryonic developmental outpouching of the peritoneum that passes through the inguinal canal and usually closes by 2 months of age. Failure of closure results in an abnormal communication between the peritoneal cavity and the scrotum in males, and the labia majora in females. This may result in a number of conditions whose imaging findings will be shown in this poster. A patent processus vaginalis in females is known as the Canal of Nuck.

Imaging Findings:
This poster will illustrate the anatomy of the inguinal canal. The ultrasound findings of a wide range of pathologies such as inguinal hernias containing incarcerated bowel, omentum, ovaries, uterus, the appendix and Meckel's diverticulum, as well as pathologies such as testicular torsion, cryptorchidism and hydroceles-communicating and non-communicating will be shown.

Conclusion:
After reviewing this poster the reader will be familiar with the ultrasound anatomy of the inguinal canal and as well as the imaging findings of pathologies that may occur within it.

42. The use of contrast enhanced ultrasound (CEUS) in the identification of paediatric blunt abdominal trauma, Elisabeth Pearce, Radiology Newcastle Upon Tyne Hospitals Trust

Background:
Uncertainties still surround the use of contrast enhanced ultrasound (CEUS) in the paediatric population and its ability to evaluate blunt abdominal trauma injury. The purpose of this research was to systematically review the evidence regarding the accuracy and safety of CEUS in the paediatric population who have sustained blunt abdominal trauma.

Methods:
All relevant studies from 2001 onwards which investigated the use of CEUS in the paediatric population, in relation to blunt abdominal trauma evaluation, were systematically reviewed.

Results:
Five studies fulfilled the inclusion criteria. The main finding was that CEUS was demonstrated to be a highly accurate imaging modality for the identification of abdominal trauma in the paediatric population. Studies show that it is particularly useful in detecting laceration, haematoma and active bleeding but less sensitive in the detection and characterisation of urinomas following renal injury. Limitations were noted in the methodological quality of the included studies, which included small populations and limited areas of investigation.

Conclusions:
The use of CEUS in the paediatric trauma management pathway is promising with sensitivity and specificity to match computed tomography (CT) in the detection of certain traumatic pathologies, however, its use has been hindered by its off-label legislation meaning there is a lack of high quality studies in this field. Further large scale primary studies are required in order to evaluate its use in the paediatric population.

43. Coarctation diagnosis from renal ultrasound, Richard Brindley, Ultrasound, New Cross Hospital, The Royal Wolverhampton NHS Trust

An inpatient was referred to ultrasound from the paediatric consultant, regarding hypertension in a young female patient. The clinical question, pertaining to any evidence suggesting possible renal artery stenosis, that may account for the patients symptoms. There was no mention of any other underlying pathologies.

These are not always well demonstrated on ultrasound for numerous reasons, such as bowel gas, 2 renal arteries, patient body habitus etc.

I scanned the patient as normal assessing renal size and outline. I managed to demonstrate good perfusion on colour Doppler, however the renal arteries showed unusual dampened waveforms bilaterally. In light of the fact that the kidneys appeared otherwise normal was in doubt that this would represent bilateral renal artery stenosis in a young patient.
I decide to look at the femoral arteries, which also demonstrated an unusual dampened waveform.

I further assessed the radial arteries bilaterally to see if there was any proximal changes. These demonstrated normal waveforms.

I was concerned at this point and discussed the findings with a Consultant vascular radiologist. Who suggested this may represent a proximal aortic problem, either coarctation or possible proximal aortic narrowing.

The patient went on to have a chest x-ray which showed features of possible aortic coarctation; the reversed 3 sign and subtle rib notching. The patient was referred to a specialist centre for further cardiac assessment, where they confirmed severe aortic coarctation with small transverse arch and LV hypertrophy.

Physics

44. **Use of the Leicester Elastography Pipe Phantom (LEPP) for assessing performance of ultrasound shear wave elastography: An inter/intra observer reproducibility study**, Fahad Farhan Almutairi, Cardiovascular Sciences, University of Leicester

Background:
Shear wave elastography is emerging as a valuable imaging modality to quantify Young’s modulus (YM) of various tissues. Test objects are required to assess performance of this new technology and for routine quality assurance. Analogous to the Edinburgh Pipe Phantom, which quantifies performance of grey-scale imaging, the Leicester Elastography Pipe Phantom (LEPP) was developed to assess elastography imaging performance. The aim of this study was to assess the potential value of LEPP as a test object and reproducibility of LEPP measurements within and between observers.

Methodology:
The LEPP consisted of 5 soft PVA-cryogel pipes with varying diameters (2mm-12 mm), surrounded by a stiffer agar based tissue mimicking material (TMM). A Supersonic Aixplorer ultrasound system with L15-4 probe was used to image longitudinal sections of each pipe at different depths and scanner settings. The penetration depth and YM measurements within each pipe were obtained by two observers to assess reproducibility.

Results:
Inter and intra-observer reproducibility of the penetration depth measurements was excellent (intra class correlation coefficients ICC = > 0.80 in all pipes). The penetration depth increased with increasing pipe diameter and use of “penetration” setting (depths 5.3, 4.6, and 4.5 for 12 mm pipe compared to 3.9, 2.9, and 3cm for the 2 mm pipe for the penetration, resolution, and standard settings, respectively). The YM estimates within 2 mm region of interest placed in the middle of pipes decreased with increasing depth and were lower for 4 and 2 mm pipes (approx. range 130 – 40 kPa).

Conclusion:
The LEPP provides quantitative information about SWE imaging performance. Inter and intra- observer reproducibility is excellent. Use of the LEPP, helps establish optimum scanner settings and assess artefacts and errors in YM estimates due to partial volume effect, signal to noise and depth

45. **Low Intensity Pulsed Ultrasound for bone regeneration therapy: A controlled in vitro study method**, Jill Savva, Margaret Lucas, Helen Mulvana, Medical and Industrial Ultrasonics, School of Engineering, University of Glasgow

Background:
Low Intensity Pulsed Ultrasound (LIPUS) stimulates healing of fractured bone. Many in vitro studies, including Tang et al. [Molecular Pharmacology, 2006; 69(6): pp2047-2057], investigate the mechanisms involved by measuring cellular markers of bone regrowth under various acoustic conditions. But comparison between trials is difficult due to inadequate acoustic characterisation. Many set-ups are prone to standing waves and plate resonances, making acoustic conditions difficult to predict. Additionally, spatial-average acoustic intensity (ISATA) is the standard measure
of exposure, whereas mechanical bio-effects, considered the most likely mechanism, are more associated with peak-negligible pressure (PNP).

This study aims to establish a robust and repeatable protocol for in vitro investigation of LIPUS and proposes the use of PNP to compare results.

Methods:
Murine osteoblast cells (MC3T3-E1) were grown to confluency in a custom cell-holder, comprising a circular 3D-printed frame (VeroGrayTM) bounded by 6µm Mylar membranes (Goodfellow, UK), providing an acoustically transparent window and cell growth surface. Self-sealing septa allow injection of cells and growth media.

The cell-holder was positioned 100mm from a purpose-built LIPUS transducer in a tank of sterilised water at 37°C and exposed for 20 minutes to LIPUS with frequency 1MHz, pulse width 200µs, repetition rate 1kHz, PNP 0kPa (control) to 500kPa. The maximum and spatial-averaged PNPs and Intensities were determined prior to exposure by scanning with a 0.5mm needle hydrophone (Precision Acoustics, UK) and correcting for membrane attenuation.

After incubating for 24 hours, the concentration of Prostaglandin E2 (PGE2), a marker of bone regrowth used by Tang et al., was measured using an ELISA kit (Abcam AB133021) and standard microplate reader (Tecan, AT).

Results:
PGE2 up-regulation was assessed against PNP to establish optimal conditions for LIPUS stimulation of bone regrowth. Intensity data allowed comparison with existing studies.

Conclusions:
The results will validate the protocol for controlled investigation of the mechanisms involved in LIPUS stimulation.

46. A novel complex flow phantom for doppler ultrasound, Simone Ambrogio1,2, Adrian Walker2, Simone Ferrari1, Prashant Verma1, Andrew Narracott1, John W. Fenner1, 1Infection, Immunity and Cardiovascular Disease University of Sheffield, 2Leeds Test Objects Ltd, 3Medical Imaging and Medical Physics University of Sheffield

Background:
Traditional Doppler ultrasound methods and newer ultrasound technologies, including vector flow imaging and volume quantification, are used to measure blood flow in cardiovascular systems exhibiting complexities such as recirculation, turbulence, jets and vortices. Existing Doppler phantoms struggle to confirm the accuracy of ultrasound methods in measuring complex flow. A novel phantom, designed to produce complex flows that are physiologically relevant, stable, predictable, controllable and reproducible, is presented. A Vortex ring is chosen as the reference flow for the development of the proposed phantom.

Methods:
A vortex ring forms when a column of fluid is pushed through a smaller orifice into a neighbouring fluid environment. The fluid “rolls up” at the orifice face, forming a toroidal vortex that (for specific Reynolds numbers) propagates along its axisymmetric axis. The phantom design proposed uses a piston/cylinder system to propel a slug of fluid through an orifice that connects to an open tank full of fluid. Different orifices diameters can be provided on demand. Main vortex parameters, which are related to the piston displacement and piston speed, can be controlled by a programmable microcontroller and a linear stepper motor. Orgasol® particles (10um) were chosen to provide a scattering signal for vortex visualisation using ultrasound.

Results:
The assembled phantom is shown in Figure 1. Laser-PIV (particle image velocimetry) measurements have shown that vortex ring velocities ranging from 8cm/s to 80cm/s can be produced with reproducibility better than +/- 8% (Figure 2). Figure 3 shows an Ultrasound scan of the ring vortex with examples of B-mode and Colour Flow Doppler images and Pulse Wave Doppler spectrum.

Conclusion:
A novel, cost-effective, vortex ring flow phantom has been presented. Early results point to its potential as an Ultrasound flow phantom that can test scanners operating in standard Doppler modes and advanced flow mapping modes.
47. **Advanced practice in ultrasound: Extending the boundaries**, Rachel Moore, Colin Griffin, Ultrasound Royal Liverpool and Broadgreen University Hospital

Background:
Ultrasound advanced practice has allowed development within specialist areas. Within a large teaching hospital, Ultrasound Advanced Practitioners have developed into leading clinical roles which include the use of interventional techniques to aid with clinical diagnosis.

Method:
This poster will demonstrate the extended roles that Ultrasound Advanced Practitioners have within the specialist areas of head/neck and musculoskeletal ultrasound which have only been previously performed by Consultant Radiologists. The ultrasound advanced practitioners involved have been through a rigorous training programme, which includes assessment by Consultant Radiologists, which enable them to independently perform several interventional procedures under ultrasound guidance. These techniques will include fine needle aspiration of neck and thyroid cancers and small joint injections of the hand and wrist.

The poster will demonstrate the training programmes, the procedures performed and demonstrate the autonomy the Advanced Practitioner’s demonstrate during the lists that they perform. The poster will demonstrate how guidelines and policies have been produced to allow this to be performed safely and at a high standard.

Conclusion:
Ultrasound Advanced Practitioners are able to perform autonomous ultrasound guided interventional procedures to the same high level as a Consultant Radiologists. Thus pushing the boundaries of advanced practice.

48. **BSc(hons) medical ultrasound**, Anushka Sumra, Radiography Birmingham City University

It is universally accepted that the Ultrasound Profession is becoming evermore diverse. As such a board spectrum of healthcare professions are choosing to adopt and embrace the use of Ultrasound technology to create a competitive advantage within their respective fields.

It must also be noted that alongside an exponential increase in the Clinical requirement of CASE trained sonographers and the service needs, the ever-varying needs of the patients must also be addressed. It is accepted that a significant overhaul to the traditional Postgraduate intake route must be implemented, failure to do so, resulting in the above aspirations not being delivered upon.

For those individuals wishing to pursue a profession in Sonography, there are a number of defined pathways available, namely, Post Graduate Study and Short Stand Alone Ultrasound courses (Focused Courses).

In order to address the education shortfalls and provide a greater volume of skilled students, there must be focused effort by the education bodies to provide a wider and more varied pathway, without depleting other struggling professions such us Radiography, Midwifery, Nursing or Physiotherapy.

The introduction of the innovative new Direct Entry Course will ensure that a new generation of professionals are both attracted to the profession and set on a structured education pathway, resulting in a diverse workforce needed to address the constraints present in todays system.

The poster will be utilised as the core medium of presenting the contents of the Direct Entry BSc (Hons) Medical Ultrasound plus PgCert Medical Ultrasound (perceptorship) programme.

49. **Direct entry the University of Cumbria experience**, Lorelei Waring, Gareth Bolton, Amanda Marland, Shelley Smart, Medical and Sports Sciences, University of Cumbria

In 2016 the University of Cumbria introduced the UK’s first dedicated Direct Entry Postgraduate Ultrasound MSc and following a careful selection process accepted 5 students on to the programme with the support of 5 clinical ultrasound departments who agreed to be placement hospitals. This report investigates findings arising from interviews with the clinical leads of these placement hospitals as well as the first cohort of students evaluating their experiences and opinions of the programme throughout the two-year registration period.
50. **The use of normal pregnant volunteers in ultrasound education – First insights of student experience**, Gillian Coleman, Heather Venables, JP Mayes, Rebecca Evans, College of Health and Social Care, University of Derby

The use of normal volunteers has been well utilised in ultrasound education. This has been restricted to non-pregnant volunteers in accordance with BMUS guidelines on the use of volunteers for teaching purposes.

Guidelines and governance procedures for the use of normal pregnant volunteers have been produced by the academic team at the University of Derby in conjunction with the obstetric clinical team at University Hospitals of Derby and Burton NHS Foundation Trust and in consultation with the BMUS safety group. Pregnant patient volunteers recruited from the local Obstetric ultrasound department at the Royal Derby Hospital will be utilised during the Obstetric module academic teaching on the University campus to enhance and embed practical learning within the academic practice.

Student feedback obtained during the first academic uses of pregnant volunteers will be discussed to provide insight into how this has enhanced their learning experience.

51. **Surviving Big Brother – maintaining quality without damaging staff moral**, Karen Zgoda, Pamela Parker, Andrew Hunter, Ultrasound, Hull and East Yorkshire Hospitals NHS Trust

No one likes scrutiny, no one wants to be watched. What if we are found wanting and outside of the norm? But, a robust, well established peer review system can do just that. As dedicated health care professionals we strive to deliver the best care we can but with growing experience can come complacency and a false-belief that you can learn no more.

As has been documented in previous studies there is no optimum method to fully review sonographers practice. The best tool available at this time is the BMUS recommended audit tool. Regular peer review of static images in conjunction with monthly learning from discrepancy meetings (LDM’s) have been well established within this institution since 2013. The sonographer discrepancy rate within the department is known. The LDM’s have provided significant opportunity for learning and education programmes but require engagement from all staff. In the ideal world all sonographers would embrace such an opportunity to have their work reviewed and scrutinised but the reality, we know, is different. It can be a scary and off putting process which unfortunately can lead to disenfranchising our valued sonographers.

This poster presents the darker side of peer review. What does the process actually feel like? How did we get full engagement from the staff involved and how did they survive big brother?

52. **Empathy scores following an interactive service user session for sonography students: A pilot study**, Gill Harrison, Allison Harris, School of Health Sciences, City University of London

Background:
Empathy and compassion are deemed to be important skills needed for working in the healthcare setting. Sonographers are expected to deliver difficult news to patients, often under challenging circumstances, without warning and in some cases when unsure of the actual diagnosis. This study aims to assess medical ultrasound students’ opinions of a new interactive service user and carers session, which was introduced to the programme in June 2017. It also investigated whether empathy scores changed in response to the interaction with service users.

Method:
Students were invited to participate in the study by completing the Toronto Empathy Questionnaire (Spreng et al, 2009) before and after the service user session. Students and service users also completed a short questionnaire at the end of the session, for evaluation and to provide suggestions for future iterations. Students were asked to reflect on what they had learnt and how it might impact on their practice. Twenty three students (48%) participated in the study at a single institution across two cohorts.

Results:
Twenty empathy scores were valid. In the first cohort average empathy scores increased from 48.1 to 51.9 with 80% of students showing increased empathy score, whereas the second cohort average empathy scores remained the same pre and post session at 51.3, with 40% increasing, 40% reducing and 20% remaining the same after the session, (published norms 44.5 – 47). The event met or exceeded students’ expectations, despite one student thinking they would not ‘get anything out of it’.
Conclusion:
Students valued the ‘candid and frank’ exchange with service users. Empathy levels increased or remained the same three quarters of students. Various ways to change practice in light of this session, which would impact on patient care and communication, were highlighted.

53. Service needs, capacity and innovations to extend clinical capacity for sonographer education: An on-line survey, Gill Harrison, Society and College of Radiographers

Introduction:
Sonography is a shortage occupation, with evidence suggesting vacancies rates of between 5 to 25% in England. Ultrasound education is changing to meet service needs, however one challenge being faced by education providers and clinical staff is the lack of clinical placement capacity.

Method:
An on-line survey was sent to ultrasound managers to investigate innovations being used to increase clinical capacity for educating sonographers. Higher education providers were also contacted via email and telephone for their views on innovations in ultrasound clinical education. Additional objectives of the study included determining current and future estimated sonographer shortages and placement capacity.

Results:
There were 72 responses to the questionnaire. The average shortfall in sonographers was 2.65, with 5% of departments reporting a deficit of 10 sonographers. The predicted number of additional sonographers required to provide the service in five years’ time was an average of 4.6 sonographers, with 10% of departments anticipating they will need an additional 10 sonographers. Most departments were involved in clinical ultrasound education, with 51% of students being sonographers, averaging two per department. Several departments had additional capacity for teaching students, with a combined total of 45 places. A number of challenges were raised by respondents, particularly relating to issues of funding for student sonographers, balancing clinical and teaching requirements, staff shortages and the need to teach others, e.g. radiologists because of radiology shortages.

Discussion and Conclusion:
A number of different methods are being used to extend the capacity for clinical education of sonographers, these include extended working days and weekend teaching lists, simulation and peripatetic clinical educators. As ultrasound education is undergoing changes, to meet the increasing service needs, innovative solutions to increase placement capacity are needed. This study provides some ideas to assist education providers, clinical departments and stakeholders to meet these demands.

54. Implementing a multi-disciplinary service for new-born hip screening, Lisa Hurndall1, Peter Cantin1, QiQi Lam1, James Metcalfe2, Faye Nightingale3, Helen Little4, Mark Walker5; 1Ultrasound, Plymouth University Hospitals NHS Trust, 2Orthopaedics, Plymouth University Hospitals NHS Trust, 3Physiotherapist (REMEDIAL SERVICES), Plymouth University Hospitals NHS Trust, 4Hospital Paediatric Services, Plymouth University Hospitals NHS Trust, 5Imaging, Plymouth University Hospitals NHS Trust

Background:
The neonatal new-born screening service for development dysplasia (DDH) of the hip was previously provided by the neonatology team within our institution. They were unable to continue to provide this service and the ultrasound department agreed to provide this service in conjunction with the orthopaedic and paediatric physiotherapy department. The model chosen to implement this new service change was the Plan, Do, Study, Act (PDSA) cycle.

This poster describes how a multi-disciplinary whole team approach working under the PDSA framework enabled a model service to be implemented within a short space of time (3 months). Continual evaluation of the service is essential and a second PDSA cycle has been instigated to ‘fine-tune’ the service and resolve any additional issues which were not anticipated at the start of the project.

It is hoped that our own experiences described in this poster will be of benefit to others when they are looking to implement new services, service improvements or simply looking to evaluate their existing services. We will stress the benefit of a whole team approach, working collaboratively across the multi-disciplinary team towards a common aim. The use of the PDSA framework has also been invaluable in helping to deliver an optimal service within the necessary time frame.
55. **Inhealth Junior Sonographer Programme**, Lynne Williams, InHealth

Background:
The Centre for Workforce Intelligence (CfWI) was commissioned by the Department of Health (DoH) and Health Education England (HEE) to perform a workforce survey and to model the current, and forecast the future for ultrasound in the UK. The survey was published in March 2017.

This survey showed that the number of Non-Obstetric Ultrasound (NOUS) events was increasing on an annual basis and that ‘insufficient training staff’ were available.

The experience of our London ultrasound team has been similar. Increasing demands for NOUS, and difficulty in recruiting Senior, reporting, Sonographers has produced a shortfall in scan availability.

Report:
To provide an outline for training of new Ultrasound Practitioners within InHealth, to enable them to practice safely, within UK standards.

The ‘In Health Ultrasound Practitioner training programme’ is designed to provide structured training to equip non-reporting Sonographers, and those with limited reporting experience, with the skills required for advanced practice.

It was designed to provide newly recruited staff with the extended skills necessary to competently interpret their own scans and produce professional reports.

We recruited 6 qualified Sonographers, with a minimum of one year's scanning experience in general Ultrasound and developed and delivered, over a period not exceeding 6 months, a training program to result in the above staff being assessed and deemed competent to scan and report independently.

Discussion:
- Providing the necessary resources, training and support to achieve the objective, in the timeframes provided, was hard
- The development of a strict timetable and a formal logbook were essential
- Support for the staff undertaking the training was vital
- A mix of clinical skills and specific reporting training were used, along with reflective learning
- The outcome has been a cohort of valuable team members, trained to our In-Health and UK standards

56. **Sonographers’ experiences of work-related musculoskeletal disorder: The everyday consequences of physiological stress and injury in contemporary ultrasound**, Gareth Bolton, Lisa Booth, Paul Miller, Medical and Sport Sciences University of Cumbria

Background:
By 2013, the UK government's Migration Advisory Committee had listed sonography as an official ‘shortage specialty’ (Migration Advisory Committee, 2013; Parker and Harrison, 2015). As a consequence of the working stresses allied to this shortage, British sonographers have increasingly been reducing hours or leaving clinical practice entirely (Society and College of Radiographers, 2014). Moreover, among those who remain, incidences of reported chronic pain and active injury are also on the increase within a profession that was already synonymous with high rates of work-related musculoskeletal disorder (WRMsD; Harrison and Harris, 2015). While contemporary research has described the rates of WRMSD among ultrasound practitioners (Bolton and Cox, 2015), none has to date extensively explored its personal and professional impacts.

Methods:
Using a model of Interpretative Phenomenological Analysis with proven facility in medical imaging research (Miller et al., 2017), extended semi-structured interviews with N=10 experienced sonographers were analysed.

Results:
Participants routinely reported a sensation of guilt and depleted self-efficacy that not only permeated any working absence resultant of their own WRMSD, but also to taking legitimate leave when colleagues were suffering from
WRMSD. An upshot of this was to recurrently “take one for the team” and work through excessive pain, even when this would likely result in greater prospective physical damage. While the basic shortage of sonographers was the core attribution for such behaviours, participants also cited (1) increasingly obese patients, (2) increasingly unhelpful (i.e. profiteering) equipment manufacturers, and (3) their own paternalism regarding healthcare.

Conclusions:
The present situation in ultrasound mirrors a culture of potentially dangerous pain acceptance that been noted in the psychology of sport for some time (Weinberg et al., 2013) albeit for altruistic, rather than egotistic, reasons.

3. Migration Advisory Committee. (2013) Skilled Shortage Sensible: Full review of the recommended shortage occupation lists for the UK and Scotland, a sunset clause and the creative occupations. London: Migration Advisory Committee,

Vascular

57. **Doppler ultrasound in the surveillance of a femoro-popliteal bypass graft and associated pseudoaneurysm**, Ellen Cronin, Radiology Department, Mercy University Hospital, Cork, Ireland

Background:
Bypass graft pseudoaneurysms are a delayed complication of surgery, usually located at anastomosis level. This case study demonstrates the role of Doppler ultrasound in the surveillance of a left femoro-popliteal autologous vein bypass graft, with subsequent pseudoaneurysm formation at mid graft level.

Ultrasound Findings:
7 years after initial surgery, Doppler ultrasound demonstrated a 3 cm x 3 cm pseudoaneurysm arising from the mid portion of the graft. 9 months later, the patient returned for further imaging. Doppler ultrasound revealed that the pseudoaneurysm had increased in size to 4.7 cm in maximal dimension. Consequently, the patient underwent surgery to excise the pseudoaneurysm. 10 days later, Doppler ultrasound was again performed due to a swelling in the patients mid thigh. This corresponded to a 4.7 cm x 5.7 cm hypoechoic avascular abnormality surrounding the bypass graft, consistent with a haematoma.

Discussion:
Peripheral arterial disease is an increasing entity worldwide and advanced disease results in a decline in ambulatory functions and reduced quality of life. In the management of the disease, revascularisation of the limb plays a critical role. In the post-operative setting, a successful Doppler ultrasound graft surveillance program will prolong graft patency. An example of which includes a Doppler ultrasound at 1, 3, 6 and 12 months and 6 months thereafter. Unfortunately for the patient at the centre of this case study, a CT angiogram 2 months post surgery revealed an occluded femoro-popliteal bypass graft throughout its length. Subsequently, the femoro-popliteal bypass graft was revised with a synthetic interposition graft.
Conclusion:
Doppler ultrasound plays an essential role in both the surveillance of femoro-popliteal autologous vein bypass grafts and identification of subsequent complications. As a result, a Doppler ultrasound surveillance program should be implemented for all patients undergoing femoro-popliteal bypass surgery.

58. Learning from experience and sharing knowledge: Doppler training for nurses to improve pedal pulse assessments, Kate Houghton¹, Jonathan Greenwood², Teresa Robinson¹, ¹Vascular Science, Bristol Royal Infirmary, ²Coronary Care Unit, Bristol Royal Infirmary

Background:
Transcatheter aortic valve implantation (TAVI) requires a puncture to be made in the femoral artery. Post procedure patients are monitored on the ward for complications which involves assessment of the pedal arteries. Following a clinical incident where a patient suffered an occlusion, practice in our Trust has recently changed so that pedal pulses are assessed by Doppler rather than manual palpation. To ensure the accurate use of Doppler by nursing staff, the Vascular Science department were contacted to request training and assessment.

Aim:
For cardiac nursing staff to accurately assess pedal pulses with Doppler.

Objectives:
• Locate three pedal arteries,
• Apply an accurate technique of probe positioning to interrogate the pedal arteries,
• Recognise the Doppler pulse sound as either healthy or abnormal

Methods:
A training plan and competency assessment was developed by a Clinical Vascular Scientist. An explanation and demonstration of technique was provided by the Scientist allowing one-to-one training sessions. Nursing staff were provided with a competency log to document their learning. To achieve a certificate of competency, a satisfactory technique and thorough understanding of the test without assistance was demonstrated.

Outcomes:
Between March and July 2018, 17 nurses received one-to-one training and are currently completing their competency logs. The training is ongoing with the remaining 8 nurses scheduled to have training in the coming weeks.

Discussion:
Although most nurses were confident in their Doppler technique prior to training, on reflection recognised they were unaware of the correct location of the pedal arteries and unaware of the importance of probe angle positioning. Nurses have been trained to recognise differences in healthy and abnormal Doppler signals. This allows them to identify a potential reduction of blood flow to the foot at an earlier stage than occlusion, therefore prompting earlier medical attention in the aim to prevent major complications.

59. Put your thinking HAT on... Pulsed-Wave doppler ultrasound characteristics of a Hepatic Artery Thrombosis, Lorraine Healy¹,², Kristine Gallagher², Therese Herlihy¹, ¹Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Ireland, ²Radiology Department, St. Vincent’s University Hospital, Elm Park, Dublin, Ireland

Background:
This case study describes the ultrasound findings of a 54 year old female who presented to the ultrasound department with raised liver enzymes, eight weeks post-orthotopic liver transplant (OLT). The immediate post-operative ‘Ducts and Doppler’ ultrasound examination showed no evidence of vascular complications and her recovery was uneventful. Upon presentation eight weeks later, the ultrasound examination demonstrated a late post-procedural hepatic artery thrombosis (HAT).
Case Report:
Doppler ultrasound imaging demonstrated an extra-hepatic artery with areas of aliased colour filling tapering to an area void of colour filling. A ‘tardus-parvus’ waveform was detected in the intra-hepatic segment of the common hepatic artery and right intra-hepatic artery. Left hepatic arterial flow was absent. Arterial resistive index (RI) and systolic acceleration time (SAT) were both indicative of an occlusion (RI <0.5, SAT >0.08s, classic tardus-parvus waveform, absent flow of the left hepatic artery). Furthermore, a collateral arterial supply to the RHA was detected. CT corroboration imaging showed a stable hepatic artery thrombosis with a small intra-hepatic collateral arterial branch formation.

Discussion:
Ultrasound is utilised as the first-line imaging modality when assessing liver vascularity post-OLT. Spectral and colour Doppler ultrasound have a crucial role in the diagnosis of HAT. In this case, an arterial complication was ultrasonically diagnosed due to an aliasing common hepatic artery tapering to an area void of colour flow. Downstream, Spectral Doppler demonstrated a ‘tardus-parvus’ waveform. The left hepatic artery demonstrated no flow. Doppler ultrasound has both a high sensitivity (54% to 92%) and specificity (64% to 88%) in the diagnosis of HAT. Correct operator technique is crucial for accurate measurements and every effort to detect hepatic arterial vascularity downstream must be made. A swift diagnosis of HAT is imperative as complications can rapidly progress to graft failure where re-transplantation is often the only treatment option.
BMUS Annual Gala Dinner and Awards Ceremony

5th December 2018

19:00 Pre-Dinner Drinks
19.45 Gala Dinner & Awards Ceremony

The evenings festivities will include a three-course deluxe menu, entertainment and disco.

An evening not to be missed, we have Manchester’s finest local band, the ‘JukeBox Band’ performing, a fun-filled photo-booth where you can really let your hair down and a DJ to help you dance the night away. The winners of this year’s prizes will be announced after dinner.

Carriages at 12.30
A wonderful opportunity to begin your Christmas Festivities with old and new acquaintances, come and join us for yet another fun packed BMUS event.

The Monastery, Manchester

Tickets are priced at £39.90
HITACHI – GOLD SPONSOR

Hitachi Technology Innovations at BMUS 2018

Hitachi’s dedication to diagnostic ultrasound has created an extensive portfolio of ultrasound systems designed to meet the unique requirements of Radiologists and Sonographers. Over eighty years combined experience has enabled Hitachi to produce intuitive systems with exceptional functionality from the premium level ARIETTA 850 with CMUT technology through to high and mid-range ultrasound including an expansive range of portable systems. As pioneers of the world’s first commercially available Elastography system in 2003, Hitachi now extend the utility of their systems further with the implementation of Body Motion and Needle Tracking functionality expanding the utility of Real-time Virtual Sonography as the ideal partner for Interventional Radiology.

Proud to host Education on the Stand | Thurs 6th Dec | Vasa Praevia: ‘A Logical Approach’ by Elizabeth Daly-Jones
13.25hrs – 13.45hrs

Visit us - Stand 1 | Gold Partners at BMUS 2018

NANOSONICS

Nanosonics is an innovator in infection prevention. Our unique, automated trophon® high level disinfection system has paved the way around the world in setting a new standard of care in ultrasound probe disinfection practices. Currently there are over 16,000 units installed in over 21 countries.

In August 2018, Nanosonics launched trophon®2, the latest innovation in ultrasound probe high level disinfection. trophon®2 features an enhanced design, simple and fast workflows, and all new AcuTrace™ for digital record keeping and seamless integration with your hospital IT system.

Meet us at booth 2/3 to learn more about how trophon® will enable you to meet the new BMUS, ESR guidance on ultrasound probe disinfection.

www.nanosonics.co.uk
ADVANCED ULTRASOUND ELECTRONICS (AUE)

Advanced Ultrasound Electronics UK Ltd, based in Northampton, UK, repair ultrasound parts to component level for Philips, GE, Hitachi Aloka, Canon, SonoSite and Siemens amongst others, and can provide repaired, new and used ultrasound parts, probes and systems.

We offer in-house repairs for portable systems and have GE, Philips and SonoSite systems available to rent if required.

We have a range of CPD approved biomedical based training courses, from Introduction to Ultrasound through to various Advanced system specific courses focusing on next level repairs.

www.aueltd.co.uk/

PACIFIC RADIOLOGY

Pacific Radiology is New Zealand’s leading radiology services provider. We offer the full range of imaging modalities with a team of over 850 and one-quarter of the radiologists in the country.

And now we’re looking for British and Irish qualified sonographers wanting a gratifying career and a fantastic lifestyle in New Zealand.

Charge Sonographer Sue Byers and our Service Delivery Manager Jane Hardy will be at BMUS to answer your questions about a move to New Zealand. Sue is originally from the UK so she can give you first-hand advice about qualifications and immigration requirements.

www.pacificradiology.com/##/
GE HEALTHCARE – SILVER SPONSOR

GE Healthcare is a leading provider of medical imaging, monitoring, and life science technologies. GE Healthcare enables precision health in diagnostics, therapeutics and monitoring through intelligent devices, data analytics, applications and services to help providers, researchers and life sciences companies in their mission to improve outcomes for patients around the world.

CANON – GOLD SPONSOR

Canon Medical Systems Corporation develops and manufactures diagnostic imaging systems including CT, MRI, Ultrasound, X-ray systems and clinical laboratory systems and provides them to around 140 countries and regions around the world, offering technology that provides faster diagnosis and early treatment. Under the slogan “Made for Life” (Made for Partnerships, Made for Patients, Made for You.), Canon Medical Systems is making positive contributions toward hospital management, and provides a range of patient-friendly healthcare systems and services.

https://uk.medical.canon
TRISTEL

Tristel is a manufacturer of infection prevention and contaminating control products. Its lead technology is a chlorine dioxide formulation, which has been a ground-breaking innovation in the world of Infection Control. Please visit Tristel at stand 8 to find out about Tristel products particularly suitable for Ultrasound.

http://www.tristel.com/

UKAS

ISAS is a patient-focused accreditation scheme that ensures patients consistently receive high quality services, delivered by competent staff working in safe environments. Supported by NHS England and recognised by the CQC, accreditation gives confidence to patients, commissioners and staff about safety, effectiveness and sustainability. UKAS assessment for accreditation is against the ISAS Standard, a quality enhancing standard based on clinical and patient reported performance measures. The Royal College of Radiologists and the College of Radiographers have appointed UKAS, the national accreditation body, to undertake assessments for the ISAS scheme, which is available to public and private organisations across the UK.

http://www.isas-uk.org/default.shtml
SIEMENS – PLATINUM SPONSOR

At Siemens Healthineers, our new ultrasound product portfolio delivers a new era of imaging excellence.

The ACUSON Sequoia™, was developed in response to one of the most prevalent challenges in ultrasound imaging today: the imaging of different sized patients with consistency and clarity. With its new Deep Abdominal Transducer (DAX), a new high-powered architecture, and innovative updates to elastography and contrast-enhanced ultrasound, the new ACUSON Sequoia produces penetration up to 40cm.

The ACUSON Juniper™ features a lightweight, ergonomic design with complete manoeuvrability for use across a wide variety of clinical segments. Though small in size, the ACUSON Juniper is powerful. The system's versatility and adaptability, makes it ideal for diverse patient anatomies and physiologies.

www.healthcare.siemens.co.uk/ultrasound

PHYSIOLOGICAL MEASUREMENTS

Physiological Measurements Ltd (PML) are an award winning, provider of NHS Community Ultrasound and Cardiac Diagnostic Services.

99% of patients recommend PML.

Working for PML: PML are a growing healthcare company looking to expand their quality team of Radiographers and Sonographers.

If you are looking for your next challenge and looking for either full or part time positions then get in touch to find out more on 01691 676496

Or email Zahra.mamoojee@nhs.net for a confidential chat.

www.physiologicalmeasurements.com

Visit us at stand 11 & 12 for a chance to win a glamping trip for 2 with £100 spending money
PHILIPS – GOLD SPONSOR

Philips has been at the forefront of innovation in Ultrasound for more than 30 years. Today, we continue to advance ultrasound through a unique combination of high-quality, images and clinical information, helping clinicians achieve first time right diagnosis, every time, and in less time

https://www.philips.co.uk/ultrasound/general_imaging

THE SOCIETY AND COLLEGE OF RADIOGRAPHERS

The Society and College of Radiographers is committed to developing and promoting the science and practice of all forms of medical imaging and radiation therapy, including ultrasound. We put the unified voice of sonographers in the UK to good effect in developing and promoting policy on current and emerging educational, professional and workforce issues related to sonography. We are a trade union as well as a professional body and are able to represent sonographers effectively in the workplace.

Do please visit our stand at this special 50th BMUS Annual Scientific Meeting where there will be opportunity to discuss membership, win a valuable prize and review the wide range of e-LfH learning units for obstetric and non-obstetric ultrasound that are available. Members and non-members are all very welcome
ESAOTE

Esaoe, one of the world leaders in the manufacture of diagnostic ultrasound systems and probes for more than 30 years, announces three new ultrasound systems: MyLab X7, MyLab X6 and MyLab X5 following on from the MyLab 9. These new systems enrich their portfolio by establishing new standards of image quality beyond efficiency, flexibility and ease.

The MyLab X7, MyLab X6 and MyLab X5 systems renew and complete Esaote’s product range making ultrasound acquisition faster and smarter for diagnostic confidence, the reliability of clinical performance, and the increasing emphasis on daily productivity.

The Esaote Group is a leading player in the medical imaging sector, with a focus on ultrasound, dedicated MRI, and PACS software solutions. For further information please visit stand 16

www.esaote.com or contact us at infouk@esaote.com

CASMED

For over 20 years Casmed has supplied high quality devices for use in all aspects of ultrasound including needle guides and cyst aspiration needles. We offer one of the industry’s most complete selections of high-quality disposable probe covers designed to fit all makes of ultrasound probes together with balloons for endoscopy ultrasound in both latex and non-latex.

Our non-latex covers, made from polyisoprene, have excellent elasticity and combine positive aspects of latex without the negative aspect of allergy.

Probe covers prevent the risk of transmission of infection to patients and staff during procedures and eliminates costly and time-consuming disinfection. Added benefits include protection of equipment; savings in the number of probes required and reduced maintenance costs.

Covers are recommended for use in cardiology, gynaecology, urology, radiology, gastroenterology, intra-operative and surgical procedures. Our extensive range is available in both sterile and non-sterile covers and each cover is individually tested and packed.

You will find us on stand fifteen at the BMUS Meeting
Please visit www.casmed.co.uk.
MIS HEALTHCARE – SILVER SPONSOR

MIS healthcare a Samsung Gold partner has continued to showcase the latest technology produced from one of the world’s largest Electronics companies. Samsung has continued to integrate the latest in electronic and AI (Artificial Intelligence) technology to produce next generation premium ultrasound systems. Samsung's speed of innovation, delivered by MIS Healthcare Quality Services, helps medical professionals deliver great healthcare to their patients. This year MIS will introduce a range of ultrasound units to include our flagship Radiology RS85 and NEW Women's Health unit HERA W10.

www.mishealthcare.co.uk

BRACCO

Bracco UK Limited is the UK subsidiary of Bracco Imaging Spa, a multinational group active in the healthcare sector with a total of 3,100 employees operating in more than 90 countries around the world. Over the years Bracco has intensified its commitment to innovative specialised research in imaging agents for diagnostic medicine, alongside the further development of medical devices and advanced injection systems for radiology and cardiology.

Bracco's business success is based on research and innovation, international growth and corporate social responsibility. For more information please visit

www.bracco.com
THE BIRTH COMPANY

The Birth Company founded by Dr Donald Gibb provides the latest developments in Non-Invasive Prenatal Testing and Early Fetal Scanning. Working closely with fertility patients from the beginning of their IVF journey through to birth.

Over the last 4 years the clinic has moved direction from a Consultant led practice, becoming Sonographer led by Managing Director, Kate Richardson and her team of highly experienced Sonographers performing ultrasound scans at all stages of pregnancy and fertility scans. The Birth Company provides a commitment to Sonographers education and clinical developments, to provide excellent care in pregnancy.

Our clinics are located in Harley Street, London and Alderley Edge, Cheshire. We are open 7 days a week and provide late evening appointments in our London facility.

MEDAPHOR

MedaPhor, the intelligent ultrasound software and simulation company, develops artificial intelligence-based clinical image analysis software tools, augmented reality-based needle guidance software and advanced hi-fidelity haptic and manikin-based training simulators for medical practitioners.

https://www.medaphor.com/
GLOBE LOCUMS
Since our formation in 2011, Globe Locums has become one of the preeminent specialist sonography recruitment firms in the UK being on all three national frameworks – CCS, CPP and HTE. This gives us unprecedented access to all NHS Sonography vacancies. Our global reach encompasses UK, Ireland, Australia, New Zealand & Asia Pacific, allowing Globe Locums to source both locum and permanent sonographers of the highest calibre. Globe Locums is clinician owned and run allowing our ethical focus to grow with our company, making us unique in a very busy marketplace.

We are always available on sono@globelocums.co.uk and 0207 229 2620 for an informal chat.

Please visit www.globelocums.co.uk

MERMAID MEDICAL
Mermaid Medical is delighted to be exhibiting at the BMUS Annual Meeting this year.

We have several exciting new products available to see on Stand 22

• AccuCARE kits to facilitate transperineal procedures
• Ultrasound visible Breast Markers
• Range of biopsy devices for Lymph nodes, Prostate and Breast
• 90-day CE approved drainage catheter
• M Fixx - New catheter securement device for long term catheter fixation.

We look forward to welcoming you at our stand
EASYPAY NETWORK

EasyPay Network provides innovative, secure payment solutions specialising within the NHS and Healthcare sector. With over 10 years’ experience working exclusively within the NHS, our bespoke payment kiosks are installed in over 100 locations throughout hospitals in the U.K.

Our kiosks provide a safe, efficient and measurable way to collect payments and generate additional revenue within a hospital environment.

As a flexible, agile business we embrace and incorporate new technologies into workable designs and products, including delivering CIP and other measurable customer led projects.

Our customer focused approach means we can work together to innovate and add value to staff and patients.

http://easypaynetwork.com/

MERCY RADIOLOGY

Do you want a change of scenery? How about moving to the commercial and cultural capital of New Zealand?

Mercy Radiology has been an industry-leading provider of diagnostic imaging services for over 30 years, with locations throughout Auckland. Our emphasis is on quality of service coupled with the latest in imaging technology.

Pop by and talk to members of our Sonography team and learn from those who have made the move about all the opportunities and benefits that working in Auckland can provide you with.

https://www.radiology.co.nz/
MEDECON

MEDECON Healthcare is an independent provider of Managed Equipment Services (MES) and Multi-Vendor Services (MVS). Medecon is passionate about delivering a world-class service to the NHS, Private Healthcare sector and others. Medecon are experts in providing services maintenance, calibration and repairs of Radiology, Biomedical medical devices and laboratory equipment.

All Medecon engineers are OEM trained, skilled and knowledgeable to manage, maintain and repair your ultrasound systems. Medecon repair /replace faulty 2D, 3/4D and TOE/TEE transducers. Medecon also provide rentals for all types of imaging equipment from Ultrasound to Mobile CT and MR.

DIAGNOSTIC HEALTHCARE

Our passionate clinical leads strive to promote best practice and professional development with a personal commitment to both employees and clients alike.

With an ever expanding and evolving presence in the NHS we boast a flexible, stable and attractive approach to work including; contracted, temporary, locum arrangements, and attractive benefits with an option to join a reputable pension scheme. Diagnostic Healthcare (DHC) offers practitioners a supportive and diverse working environment with a variety of skill mix. All Sonographers are covered by DHC's professional indemnity insurance, come and talk to us.

Training is a key philosophy engrained in our company providing opportunities for clinical placements and professional development.

Visit our stand 28 at BMUS and say hello.

Please visit www.dhc.uk.com
RH LOGISTICS

Richard Hindle has built and watched our company grow from its infancy to becoming one of the leaders in the niche market of specialist medical transport logistics. In addition to our logistics service we offer a bespoke asset management and warehousing facility. Our Eco friendly vehicles are purpose built to ensure paramount safety and security of your equipment, and our friendly team specialises in all aspects of the transport / warehousing sectors. Located in Hertfordshire we have direct access to reach any part of the UK with ease including off mainland and beyond.

Visit us at Stand 29

www.rhlogistics.com/

GERMITEC

Germitec’s Antigermix system is designed specifically to meet your ultrasound probe high-level disinfection needs. Antigermix prevents serious infections (e.g. HPV, HIV, HBV etc.) from being passed between patients in just 90 seconds; using scientifically proven ultra-violet technology (no more chemicals!).

It comes with its own software for traceability, and is thoroughly tested for compatibility with your probes.

Come and see us on STAND 31 to learn more about the future of high-level disinfection in ultrasound.

www.germitec.com
BOWEN THERAPY

Bowen Therapy Professional Association (BTPA), is an independent non-profit making organisation. Practice standards are set by an elected committee of members. The group is part of the national Complementary and Natural Health Care (CNHC) council, which is a voluntary regulator for practitioners, set up in 2008 with government funding.

Bowen Therapy is a gentle technique using the pads of fingers and thumbs to roll over soft tissue and ligaments. Bowen is suitable to be used in all age groups and especially where pain is present. It does not attempt to force change; rather it asks the body to recognise and make changes necessary to bring it back to homoeostasis. Experience has shown that Bowen Therapy is very relaxing and in cases of emotional stress, where relaxation

Visit www.bowentherapy.org.uk

BMUS

Come along and visit the BMUS team on the second floor outside the exhibition hall. Join in the conference quiz and obtain details of our 2019 study day programme. We welcome suggestions on future education programmes, please complete the form available and add this to our suggestions box.

Members of the Editorial Team from the Ultrasound journal will also be available during the refreshment and lunch breaks to advise on how you can have your research published. Tracey will be happy to arrange a convenient time for you to have a discussion.

Not yet a BMUS member and would like to join, speak to Tracey on our stand who will be pleased to help you. Would you like to get more involved with the Society, applications are welcomed from all disciplines to join our Committees, Special Interest Groups or our virtual Sounding Board.
Empowering You to Make the Difference

10x processing power

48x data throughput

Cloud connectivity

Smart device compatibility

Generate big data and deploy deep learning

www.gehealthcare.co.uk
PROCEEDINGS OF THE BRITISH MEDICAL ULTRASOUND SOCIETY
50TH ANNUAL SCIENTIFIC MEETING

4TH - 6TH DECEMBER 2018
Ultrasound features of immature ovarian teratoma: Ultrasound features – Case series and review of literature, Salwa Abdullahi Idle, Jackie A. Ross, Early Pregnancy and Acute Gynaecology, King’s College Hospital

Objective:
The aim of this case series was to characterise immature ovarian teratomas using grey-scale and Doppler ultrasonography to increase the detection rate and awareness of these tumours. This has not been achieved to date.

Methods:
This is a multicentre retrospective case series review. Patients with a confirmed histological diagnosis of IOT, from 2006-2018 at King’s College Hospital and St George’s Hospital London, ultrasound scans were retrieved and described according to IOTA criteria.

Results:
Eight patients were identified in total with a mean age of 26 years old (range 13 – 35). Presenting symptoms included abdominal mass, pelvic pain and/or amenorrhoea. Half of the patients had a previous mature ovarian teratoma (3 ipsilateral, 1 contralateral). The cysts were large (median 115 mm), fast growing unilateral cysts with a single, peripheral, predominantly solid component arising from the cyst wall. The solid component was hyperechoic with multiple foci of fibrosis and numerous small cysts. The cystic component typically formed less than 75% of the lesion and the cyst fluid was of low-level echogenicity. Subjective assessment of vascularity of the solid part of the tumours varied between scores of 0-2. Tumour markers in this cohort showed a raised serum a-fetoprotein level in 42% of patients.

Conclusion:
Immature ovarian teratomas are rare, rapidly growing ovarian cysts that typically have a large predominantly solid, poorly or moderately vascularised component. This component is typically less cystic than the multilocular 'honeycomb' nodules of mucinous borderline tumours and much larger than the small papillary projections seen in serous and sero-mucinous borderline tumours. The hyperechoic sebaceous material that is pathognomonic of dermoid cysts was not a typical feature. The images and features described should facilitate the presumptive preoperative diagnosis in patients who present with ovarian cysts in their twenties; particularly in women with a history of a previous dermoid cyst.

Review of the outcomes of pregnancies of unknown location (PUL) in a District General Hospital, Rita Phillips¹, Tracey Blacker², ¹Faculty of Health and Applied Science University of The West of England, ²Radiology Royal United Hospitals NHS Foundation Trust Bath

Background and purpose of the study:
Pregnancy of unknown location (PUL) is a common diagnostic challenge. Correct management of PUL is crucial to reduce unnecessary intervention as well as to aid the timely detection of ectopic pregnancies. Furthermore, over surveillance with repeated scans may result in unnecessary anxiety for the woman as well as increased workload for the Early Pregnancy Assessment Clinic (EPAC).

The rationale for this review was prompted by an anecdotal observation that the frequency of PUL incidents had increased within our unit, resulting in multiple scans for the woman before a final diagnosis was made. The purpose of this review was to identify any local factors that may influence the management of women with a PUL and standardise the care received by these women.

Methods:
A retrospective data collection was carried out between January to June 2018 reviewing women attending an EPAC with the initial diagnosis of a PUL. The data collected included the diagnosis at the first scan and all of the subsequent scans and BHCg results if available. The ultrasound results were then grouped into five categories based on their sonographic findings and the final outcomes recorded.
Results:
There were 49 patients diagnosed with PUL, of these 20% were presenting at a gestation of 6 weeks or less. On average each women had 2.3 scans per pregnancy, with three women having four scans. There were two ectopic pregnancies missed in the review period. These cases were evaluated and areas of improvement identified.

Conclusion and Recommendations:
Local guidelines need to be regularly reviewed and implemented, teaching sessions need to be facilitated to enable correct interpretation of images and reporting by sonographers and the interpretation of these reports by EPAC nurses and medical staff. A repeat review is planned to monitor changes in practice.

C-Section scar sausage, Alison McGuinness, Ultrasound Mid Yorkshire Hospitals NHS Trust

Background:
In the last 5 years the author’s Trust has seen a significant increase in the number of scans performed for complications of lower segment Caesarian section (LSCS) operation scars. These include haematomas, seromas, abscesses, dehiscence and endometiotic deposits.

Method:
This case study will describe several cases of abnormal lesions seen on the anterior myometrium in the region of a previous LSCS scar, found in patients complaining of abnormal uterine bleeding and pain. The lesions have ultrasound appearances of soft tissue but have no significant vascularity and are described as ‘sausage-shaped’. The sonographers have reported unknown aetiology and therefore questioned the significance of these ‘lesions’ and have recommended that the patients have further imaging and in some cases referred the patient to a gynaecologist.

Results:
In all cases the patients have undergone repeat transvaginal ultrasound scans or magnetic resonance imaging (MRI). The lesions appear to have benign features and have been reported as being of no clinical significance, and not the cause of the patients’ symptoms.

Conclusion:
There has been an increase of LSCS scar complications, however the findings described are incidental, asymptomatic and benign and do not require further imaging or follow up and do not appear to be the cause of the patient’s symptoms. However, the significance in future pregnancies needs further evaluation.

Case Report: A presentation of Post Menopausal Pyometra, Sandra Hopkins¹,², Clodagh Curran², Mary Moran¹, Therese Herlihy¹, School of Radiography University College Dublin, ¹Radiology Our Lady of Lourdes Hospital Drogheda

Background:
Pyometra, the accumulation of pus in the endometrial cavity, is a relatively uncommon gynaecological presentation. It is more common in elderly post menopausal women and there is an associated risk of a malignant cause.

Case Report:
A 73-year-old lady was referred to the emergency department via her GP following an episode of foul smelling vaginal discharge of sufficient quantity to soak through her clothing. The patient is para 10, all vaginal deliveries. Bloods and biochemistry were normal. Speculum examination proved difficult. She was referred for a pelvic ultrasound scan.

The trans-abdominal pelvis ultrasound demonstrated a markedly distended endometrial cavity, measuring 11.2cm x 6.5cm x 7.3cm, the content of which was echogenic and motile, highly suggestive of pus. The myometrium appeared thin most likely due to atrophy and distension but was otherwise unremarkable. Interrogation with power and colour Doppler demonstrated no vascularity within the uterine cavity and no solid intrauterine masses were identified. Neither ovary was identified but no adnexal masses were seen. The patient declined a transvaginal scan.

The patient underwent a hysteroscopy and 400mls of foul smelling pus was drained from the endometrial cavity.

A contrast enhanced CT of the thorax, abdomen and pelvis was performed post hysteroscopy which demonstrated a residual collection within the endometrial cavity but was negative for any evidence of malignancy. Pelvic MRI yielded no additional information. Endometrial curettings were sent for histology which showed florid endometritis but no evidence of malignancy. Following a course of antibiotics, the patient proceeded to a total abdominal hysterectomy with bilateral salpingectomy and oophorectomy which on histology demonstrated chronic endometritis but no evidence of malignancy.
Conclusion:
Trans-abdominal pelvic ultrasound clearly demonstrated the presence and size of the pyometra. CT and MRI helped rule out a malignant cause and pathology confirmed its benign aetiology.

Head and neck

Metastatic Parotid and Thyroid Masses from Renal Cell Carcinoma, Catherine Kirkpatrick, Radiology United Lincolnshire Hospitals Trust

Background:
75 year old female presents to Head and Neck One Stop Clinic on November 2017 with a palpable right parotid lump and left anterior neck. Previous Medical History of Renal Cell Carcinoma (RCC) 2013.

There are very few cases in the literature of parotid metastasis from RCC or Thyroid metastasis from RCC. This case presents and discusses an even more uncommon finding both a thyroid and parotid metastases in the same patient - and possibly (but unconfirmed histologically) submandibular gland (SMG) metastasis.

Imaging findings and patient management discussed

Findings:
25 mm x 16 mm right parotid lesion which is visible and palpable, differential diagnosis given as a ? pleomorphic adenoma. The thyroid gland was enlarged due to the presence of multiple large nodules the largest in the left lobe measuring 35mm x 27mm, this had U3 features in line with BTA guidelines. Also 9mm hypoechoic lesion in the left SMG gland which was essentially too small to characterise on ultrasound. Contrast Enhanced CT-3 cm well-defined strongly enhancing mass superficially within the right parotid gland, similar enhancing mass within the left submandibular gland measuring approximately 10 mm. There is a benign goitre within the left lobe of thyroid with no significant tracheal compression. Contrast Enhanced MRI Neck - well-defined mass involving the right parotid gland probable pleomorphic adenoma, Left thyroid nodule measuring about 3 cm in diameter.

Cytology/Histology:
Ultrasound guided FNA Thyroid - Thy3a ; Ultrasound Guided FNA Parotid Gland - possible primary salivary gland malignancy; Ultrasound guided FNA SMG lesion was non-diagnostic. MDT recommended Parotid and Thyroid lesion US Guided biopsy.

18 G core biopsy US Guided performed of the right parotid lesion & left thyroid nodule revealed profile consistent with metastatic renal cell carcinoma.

Conclusion:
Rare presentation of renal cell carcinoma metastases in the head and neck.
The profession of sonography, Pamela Parker, Hull and East Yorkshire Hospital Trust

There is published evidence of shortage of suitably trained practitioners to deliver ultrasound services in England which goes back well over a decade. BMUS produced a statement back in 2008 highlighting the need to increase the number of practicing sonographers to ensure services could continue to be delivered safely and sustainably.

The Government’s Migration Advisory Committee National Shortage Occupation List has identified a shortage of sonographers since 2008. Against the backdrop of these shortages, various interventions have sought to develop the sonography workforce in order to address demand. These interventions have resulted in local responses with a variety of entry routes and course designs being developed.

What is apparent is the lack of a cohesive national response to addressing sonographer shortages. The HEE Sonographer Steering Group has been tasked with reviewing current models and developing a career progression framework for sonographers. The framework is to encompass a wide range of entry routes into the profession; in addition it will provide advice and guidance on the career development required by a sonographer to progress through all levels of this national framework. The presentation will discuss the framework in detail to aid employers and professionals understanding of the future workforce model.

Preceptorship in Practice, Helen Brown, School of Health, Radiography Birmingham City University

In recent years, we have seen the advent of several different educational entry routes into the sonography profession, all designed to reduce the national shortage of sonographers. How do we ensure that these newly qualified sonographers are supported into practice, to become confident, autonomous and competent practitioners working within a defined scope of practice?

Preceptorship is a widely acknowledged and accepted developmental process in nursing and midwifery, with national and regional frameworks to support the transition of newly qualified staff into their first professional post and beyond. Historically, allied health professionals have not had the same access to these programmes with the concept of preceptorship varying across individual departments, from some with very structured and defined levels of support, including, education, mentorship, clinical supervision leading to audit of scanning and reporting and a final sign off of competence, through to others operating on a “sink or swim” philosophy.

Nursing has a high attrition rate in the early post-registration period, largely cited as being due to burn out, a contributing factor is the disparity between the individual’s expectations of the role and the demands of the post, this leads to stress and ultimately burn out. With all of the work done by professional organisations to increase the sonography workforce and training capacity, it’s vital that we do not lose staff in this way. We must ensure that newly qualified sonographers are supported into practice and that they are safe, confident, caring practitioners who can provide a high quality safe service to patients.

This poster will explore the concept and purpose of preceptorship including types of activities and models of preceptorship, showing the benefits of this important period in supporting the newly qualified workforce into independent practice. It will examine the benefits of preceptorship to the workforce, the service and the service user whilst acknowledging some of the challenges of supporting preceptorship in the busy workplace.

Vascular

A Retrospective Analysis of the Growth Rate of Common Iliac Artery Aneurysms (CIAA), Aliya Dhanji-Lakha, Barts Health

Objective:
To determine the prevalence and growth rate of CIAA in patients attending a regional vascular laboratory.
Methods:
An audit of clinical reports of patients attending a regional vascular laboratory to undergo an aorto-iliac duplex scan (USS) was undertaken retrospectively. Expansion rate of aneurysms was studied in patients who had ≥2 USS scans; data was recorded at 6 and/or 12 monthly intervals up to 5 years. Patient age; initial CIAA diameter; bilateral/unilateral CIAA and coinciding aortic diameter were recorded to determine if these specific risk factors were associated with CIAA growth rates. Pearson’s correlation coefficient was used to determine the strength of association between variables.

Results:
995 of 1060 patient records were suitable for review: 21.6% (215/995) of patients had a CIAA. Isolated CIAA accounted for 17.2% (37/215). Mean CIAA growth was 1.5mm/year. There was a strong correlation between CIAA diameter vs time from diagnosis (R = 0.820; p = 0.004). Data showed that the smaller the initial CIAA diameter (15-20mm) the more rapid the growth rate (R = 0.9145; p = 0.001). An initial CIAA diameter greater that 30mm was not significantly correlated with growth rate. No impact of unilateral/bilateral CIAA on growth rate was identified. In the presence of an AAA measuring >50mm (R=0.305; p = >0.05) CIAA growth is less predictable: AAA diameter < 50mm did not correlate significantly with CIAA growth rate (p = >0.05).

Conclusion:
This data will enable development of a CIAA surveillance protocol.

Outcomes after deep vein thrombosis: Resolution, recurrence, reflux and PTS, Michelle Bonfield1, Fiona Cramp2, Jon Pollock2, 1Vascular Science University Hospitals Bristol NHS Foundation Trust, 2Faculty of Health and Applied Sciences University of the West of England

Background:
Evidence indicates that there is variability in thrombus resolution and residual venous function after deep vein thrombosis (DVT). Whether this is important for longer term outcomes is unclear. Some patients may recover fully after DVT whilst others are left with chronic symptoms grouped under the umbrella term post thrombotic syndrome (PTS).

Objective:
To examine the natural history and response to treatment of DVT and assess associations between baseline or follow-up characteristics and the longer term outcomes: resolution, recurrence, venous incompetence and PTS.

Methods:
171 consecutive participants with a first episode of acute DVT were followed-up at defined intervals for up to two years. Ultrasound was used to examine changes in thrombus and venous function. PTS was assessed using the Villalta score. Possible predictors of outcome after DVT were analysed using multivariate logistic regression.

Results:
DVT remained unresolved when prescribed anticoagulation treatment ceased in 34% of cases and 27% remained unresolved at two years post diagnosis. Recurrent DVT during follow-up was detected in 15%, new venous incompetence developed in 28% and PTS developed in 30%. Following adjustment for confounding, distal DVT and cases with lower thrombus burden were significantly more likely to resolve. The development of venous incompetence was associated with proximal DVT and treatment with heparin and warfarin rather than Rivaroxaban. Women were more likely to develop PTS than men. PTS was also associated with being overweight, residual DVT, not using compression stockings, superficial venous incompetence and deep venous incompetence when combined with superficial incompetence. No significant associations were found with treatment duration, smoking, hypertension, provocation status, pre-existing incompetence, superficial thrombophlebitis, symptoms duration, thrombus evolution pattern or recurrence.

Conclusions:
This study provides information that could potentially inform better patient information and lifestyle advice, risk stratification for PTS and more tailored treatment for DVT which could be assessed through future research.
Nonlinear effects in modern diagnostic ultrasound imaging equipment with high working frequencies, Ehsan Jafarzadeh, Mohammad Hossein Amini, Anthony N. Sinclair, 'Mechanical Engineering, University of Toronto, 'Acoustics FujiFilm VisualSonics Inc.

Diagnostic ultrasonic imaging systems with operating frequencies in excess of 30 MHz are emerging for clinical use to improve the image resolution. Until recently, limitations in hydrophone technology prevented the study of nonlinear effects in such high frequency systems. Nonlinear effects are of great importance since they can increase the amount of heat deposited locally into biological tissue and thereby raise some serious safety concerns. The objective of this paper is to evaluate the level of nonlinearity, which consists of nonlinear wave propagation and nonlinear behaviour of the transducer, and the associated consequences for modern equipment with high working frequency. To this end, a very broad band hydrophone was used to capture the pressure field of a commercial linear array imaging system working at 50 MHz, in the range of 1.2 to 8 MPa peak-to-peak pressure at the focal point in water. Strong higher order harmonics were measured even at the lower end of this pressure range. Under high pressure conditions, the amplitude of the second harmonic was only 1.5 dB smaller than that of the fundamental component; calculations indicate that the rate of heat deposition associated with the second harmonic is approximately 2.5 times that of the fundamental component. This implies that nonlinear effects (nonlinear wave propagation and nonlinear behaviour of the transducer) cannot be ignored for high frequency systems in terms of thermal bio-effects. In addition, an amplitude-dependent down-shift in the overall spectrum of the fundamental component is introduced as another consequence of nonlinearity for high frequency systems. The down-shift is due to the frequency dependence of the nonlinear effects which can lead to a noticeable decrease in lateral imaging resolution. A significant amount of down-shift (up to 35% of the central frequency of the fundamental component) was observed for the investigated 50 MHz system.

The quality of ultrasound training for 1st year Radiology trainees and the impact on the ultrasound department, Nicolas Ellerby, Samantha Mcneill, Sumita Chawla, Jolanta Webb, 'Mersey School of Radiology, 'Aintree University Hospital

Background: 1st-year Radiology trainees (ST1) generally enter training with no ultrasound experience. They need to be competent in oncall scans to answer clinical questions by the end of that same year. We looked at the quality of training for ST1s across the Northwest deanery and the impact on the US departments facilitating this training.

Methods: A questionnaire was emailed to all ST1s in the Northwest deanery. A customised questionnaire was also conducted with ultrasound department managers in the Northwest.

The questionnaires included questions on number of lists, number of patients per list, background of trainers, measures to facilitate training and rating of the quality of training on a scale of 1-5, as well as free text comments.

Results: 76% of ST1s responded, with an average of 1.2 lists per week, 64% having 6 or more patients per list. 32% led by different sonographers, 32% were consultant radiologist led, 18% had sessions with both a consultant and a different sonographer and one had no list. The average rating of ultrasound training was 3.7. 36% of trainees had both increased time slots and reduced patient lists, whilst 46% had no provisions to facilitate training. Comments included: a disparity between sonographer training and ST1 training, cancellation of lists and lost scanning time due to patient and trainers cancellations and absences. Ultrasound manager's questionnaire revealed that departments had 1-3 ST1s, and all had trainee sonographers. Average rating of ST1s training was 3.5, whilst sonography training rating was 4.5. Comments discussed the need for dedicated lists, but the inability to provide them due to the impact upon backlogs.

Conclusion: Ultrasound training for ST1s is variable despite a time pressure to become competent. Staff shortage and backlog pressures impact upon training. Dedicated lists with a dedicated ultrasound tutor responsible for trainees learning would improve US training.

UltrasoundEd, Nour Alsafi, Ali Alsafi, 'Radiology, The Hillingdon Hospital NHS Trust, 'Radiology Imperial College Healthcare NHS Trust
Introduction:
Social media has become an integral part of daily life with 38 million users in the UK alone and the average user being logged-in for 135 minutes per day. Social media has become increasingly used to disseminate learning in a variety of fields but particularly in medicine. A number of Instagram accounts are now solely dedicated to education in Radiology.

Aim:
To assess the current use of Instagram in disseminating ultrasound education.

Method:
An Instagram search using the hashtags: #ultrasound and #radiology were conducted and the content of the posts classified into social and academic. The results were then compared.

Results:
There are 461,884 #Ultrasound posts compared with 243,011 #Radiology posts. From the first 30 #ultrasound posts retrieved, 3 were educational and 27 were social. The social posts predominantly relate to announcements of pregnancy. In comparison 21/30 #Radiology posts are educational while 9 were classified as social.

Discussion:
There are a number of educational Radiology and Ultrasound accounts on Instagram. While the educational radiology posts are relatively easy to find, those for ultrasound are buried within a sea of social posts. We propose the adoption of the hashtag #UltrasoundEd to separate educational ultrasound posts and make them easier to identify. This is in order to allow the rapid free dissemination of ultrasound education.

Conclusion:
Social media can be an excellent tool for education. Instagram is an ideal platform for this as it is image based. The use of a standardised hashtag (#UltrasoundEd) for ultrasound education will help easily identify relevant educational posts.

Vastus lateralis’ stiffness: A supersonic shear wave elastography study. Rute Santos¹, Paulo Armada da Silva², ¹Medical Imaging and Radiotherapy Department, Coimbra Health School, Polytechnic Institute of Coimbra, Portugal, ²Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Portugal

Background:
Supersonic Shear Image (SSI) is an ultrasound elastography method that offers a direct quantitative measure of tissue stiffness based on the velocity of shear waves. The potential of this technique is enormous and has enabled researchers in many fields.

Purpose:
To assess changes in Vastus Lateralis’s shear modulus with knee position and after a session of maximal isometric and isokinetic Concentric and Eccentric contraction and to analyse the relationship between Vastus Lateralis’s shear elasticity and submaximal knee extension torque with SSI.

Methods:
Sixteen subjects were submitted to acute changes in Vastus Lateralis’s stiffness associated with passive stretching, performance of short but intense contractile activity, and muscle isometric contractions that were investigated by means of SSI.

Results:
The results demonstrated an acute increase of around 10% in Vastus Lateralis’s shear modulus as a result of performing maximal isometric, concentric, and eccentric contractions. The shear modulus of the Vastus Lateralis also increased when the knee moved. Finally, a linear relationship between the shear modulus and the level of isometric muscle contraction was observed.

Conclusions:
SSI proved to be a good method to investigate muscle mechanical properties changes associated with muscle function. These results emphasise an objective and quantifiable muscle Ultrasound evaluation for studying muscle adaptation and function, in general.
The Stacked-Ellipse algorithm: A novel 3D uterine segmentation tool for enabling adaptive radiotherapy for cervical cancer; Sarah Mason1, Ingrid White2, Mariwan Baker3, Claus Behrens3, Susan Lalondrelle2, Jeffrey C. Bamber1, Emma J. Harris1, 1Institute of Cancer Research, 2Royal Marsden NHS Foundation Trust, 3Department of Oncology Herlev Hospital, Denmark

Purpose:
To enable adaptive radiotherapy (RT) for cervical cancer whereby the beam aperture conforms to the target, it is essential to know the shape and position of the uterus with respect to treatment room isocentre. Though it is possible to visualise the uterus with 3D transabdominal ultrasound (3DTAUS), there is an unmet clinical need of fast 3D uterine segmentation for the purpose of US-guided RT. The Stacked-Ellipse (SE) algorithm was developed using a training set of 5 patients to semi-automatically segment the uterus on 3DTAUS, and evaluated on an independent cohort of 10 patients.

Method:
The uterus of 15 patients was scanned with 3D US (5 MHz centre frequency) using the Clarity® System (Elekta Ltd) at multiple time points during treatment, resulting in a dataset of 49 images. The uterus was manually contoured on each 3DTAUS. 5 uterine contours from the Herlev cohort comprised the training set for parameterizing the uterus as a series of stacked ellipses (Figure 1). The SE-algorithm was validated on the remaining 44 US images in the RMH cohort using the manual contours as the gold-standard.

The SE-algorithm uses a manually initialised slice in the sagittal plane to provide a series of 2D elliptical initialisation contours in semi-axial planes along the length of the uterus. Each 2D elliptical initialisation contour is deformed according to image features in the semi-axial planes of the US images such that it conforms to the uterine boundary, regularised to smooth the contour and correct for outliers, and projected into 3D.

Results:
The median [interquartile range (IQR)] Dice Similarity Coefficient and mean-surface-to-surface-distance between the SE-algorithm and gold-standard was 0.80 [0.03] and 3.3 [0.2]mm, respectively, which is within the range of reported interobserver contouring variability.

Conclusion:
The SE-algorithm could be implemented in adaptive RT to precisely segment the uterus on 3DTAUS.
Quality v Quantity: What makes a good clinical training experience, Mrs Famida Sadak, Mrs Gill Newcombe, Ultrasound Health Education Wessex, Princess Anne Hospital, Southampton

In 2015 a group of regional leads representing hospitals from across the Wessex region were deeply concerned about the shortages within the sonography workforce. Many departments were experiencing an increase in workload, were heavily reliant on locums and facing a future where 40% of the sonography workforce were eligible to retire. In an overstretched service, training was and is a challenge and an overwhelming experience for the trainees.

The concept of the Wessex Regional Training Programme was developed. Three ultrasound trainers in Obstetric and Gynaecology were recruited with the objective to deliver a high-quality training programme, increase training capacity and importantly, improve the training experience. Health Education Wessex provided funding for two posts and University Hospital Southampton NHS FT funded one substantive post.

This talk will discuss how the role of the regional trainers has developed over the last two years, the achievements of the programme as well the challenges in developing a training programme for the region. Our aim was to support the traditional post graduate trainees as well as supporting additional trainees undertaking the Short Focus Ultrasound Course in Fetal Growth Scan which the ultrasound departments were unable to support. We found that training was varied across the region and felt a standardised approach was crucial.

There is no short-term fix in solving the shortages within the profession and establishing a full complement of sonographers within ultrasound requires time, dedication and commitment. This is where the role of the regional trainers has been effective in offering a positive training experience. Our vision is to develop a Wessex Ultrasound Training Academy providing a high quality training programme with the regional trainers continuing to support the trainees in their clinical departments.

High quality training in ultrasound is clearly the key to providing a safe diagnostic and interventional ultrasound service in any setting.

Undergraduate Student Clinical Experience, Harriet Rzeskiewicz, Faculty of Health Birmingham City University

The introduction of new educational routes into Sonography has provided new challenges to clinical teaching methods. Clinical departments are under increasing pressure with growing patient volumes, staff shortages and now longer training programmes. It is essential that both students and clinical departments are supported throughout the training period.

This is an account of my experience as an undergraduate sonography student across multiple west midlands NHS trusts, discussing what has worked well and the challenges faced. Areas of comment will include Supervision, Hands-On scanning, Interesting cases, Report Writing and Social Wellbeing.

Research: you can do it too!, Catriona Hynes, Faculty of Health and Wellbeing Sheffield Hallam University

The sonography profession is undergoing a significant period of review and change, with new entry routes, the introduction of the Advanced Clinical Practice Framework, and the development of a new career framework. Sonographers are well established as clinical experts, but the new frameworks place increasing emphasis on the importance of research, as well as leadership and educational roles.

So how can sonographers develop and maintain their research skills?

This session will present a personal journey of successfully completing an MSc Medical Ultrasound programme, and then moving on to undertaking Doctoral Level study. This will include discussion of the routes available for students interested in undertaking Masters and Doctoral level research projects, the requirements, and a brief overview of funding streams available to sonographers wishing to undertake formal research programmes at Masters or Doctoral Level.

Qualified Healthcare Practitioner Promoted to Student: An Interpretive Phenomenological Analysis of the impact of Job Characteristics on Motivation for the Student Sonographer, Charlie Rogers, Royal Bournemouth Hospital

A current national shortage of sonographers is causing severe service delivery issues and figures show that the problem is getting worse. Ultrasound imaging is a frontline diagnostic tool in the detection of many pathologies including cancer. This study proposes, with the application of psychological theory of work motivations, to explore the lived experiences of student sonographers entering the post from a radiography background.
Since Kramer’s seminal paper in 1974 which highlighted ‘transition shock’, there has been a huge body of work produced by the nursing field exploring and analysing the transition from Student Nurse to qualified practitioner. There is yet to be any research done in the allied health professions field, specifically concerning the unique pathway from transitioning from a qualified radiographer to student sonographer.

Hackman and Oldham’s job characteristic model, building on Herzberg’s motivation-hygiene theory, states that there are five job characteristics that are essential to engage higher order needs for employees; autonomy, task identity, task significance, task variety and feedback.

A qualitative interpretive phenomenological analysis methodology using semi-structured, open ended interview schedules was developed. Four participants, enrolled on a CASE approved training course in the UK, aged 24-30 were recruited as a purposive sample. Data was transcribed verbatim. The validity of this study was demonstrated against Yardley’s four broad principles; sensitivity to context; commitment and rigour; transparency and coherence; impact and importance.

Interpretative Phenomenological Analysis demonstrated three master themes in the data;

"I want to be the expert": Evolving professional identity.

"Being bottom of the pile": Adjusting to a new position.

"It’s not remotely standardised": Differing practices and training.

The findings suggest that themes in the lived experience of participants are congruent with the five factors detailed in the theoretical framework. These links may offer insight for sonography departments on the broader motivational factors impacting current sonography students.

Ultrasound guided procedures: What are the barriers surrounding interventional practice for Sonographers?, Hamdi Mohamed, Chelsea and Westminster Hospital

Background:
The main aim of this study is to identify the barriers of ultrasound-guided interventional practice for sonographers in England. The radiographer/sonographer role development has been driven by a shortage of radiologists and the need to maintain an effective diagnostic service. The demand for radiology examinations has risen over recent years due to the increasing population.

Method:
The participants involved in this study were qualified sonographers in England. Between the 6th February 2018 and 13th March 2018, a self-selecting questionnaire was available online which consisted of 32 closed-ended questions and 3 open-ended questions. Conventional descriptive statistics were presented in the form of frequency histograms, and qualitative responses were then amalgamated, split and analysed thematically.

Results:
202 responses were obtained from the online questionnaire, the number 1 ranked barrier for ultrasound-guided interventional practice was staff shortages, with many expressing that radiologists are a large barrier. This study has found 29% of those who perform interventions will retire within 5 years. It was identified that average ages of those performing intervention were between 44-55. There is a significant difference between regions in seeking and performing intervention (p=0.02).

Discussion:
Various key trends relating to the barriers were identified, which include; personal preference, salary, education, training, costs, negative perceptions of other professionals, auditing, protocols, CPD and medico-legal issues. Other barriers such as; prescribing issues, part-time working, training waiting lists and no demand have also been highlighted by the study. Participants who undertake ultrasound-guided intervention were positive about teaching others, generalisation of these results are limited due to the number of responses.

Conclusions:
This research has uncovered the attitudes of those who perform interventions. These findings should be acted upon by introducing a change in practice, a larger-scale study including the whole of the UK would be useful.
Neonatal neurosonography case study of subdural collection, Andrea Kadrou, Birmingham Children’s Hospital Birmingham City University

Background:
Baby X was seven months old at the time of the cranial ultrasound and had been an ‘in-patient’ at a specialist paediatric hospital since birth. During pregnancy, mum was offered a termination as the fetus was diagnosed with osteogenesis imperfecta (OI) type 2 and had already sustained numerous fractures while in utero, however is a rare case that the patient has survived to day.

Osteogenesis imperfecta is an inherited rare collagenous disease characterised by different degrees of low bone mass and an increased susceptibility to fractures and bone deformities. OI type 2 is lethal in the perinatal period and in the most severe form, patients are at a high risk of dying due to lung hypoplasia.

Neurological complications of children with OI involve chronic subdural collections/haematomas, acute intracranial haematomas and hydrocephalus; this is due to permanent friction between the multiple bone fragments of the skull and vascular fragility. In this case study, the role of ultrasound as a first line investigation in a subdural collection case will be evaluated.

Case report:
The head circumference has increased and due to the complex background a cranial ultrasound scan was requested portably. The diagnoses was a subdural collection on ultrasound, the patient underwent a CT scan post US to further evaluate this, however CT has not added any more information.

Discussion:
Neonatal neuroimaging sonography is a very useful initial screening modality for evaluating the neonatal brain, especially in premature babies and babies that have multiple comorbidities and restrictions with imaging. The recent advances in technology, appropriate training and rigorous scanning technique have shown that neonatal neurosonography can be diagnostically accurate and useful as an initial modality for clinical management. Added to this ultrasound is cheaper than cross-sectional modalities, does not require sedation and there is no ionisation radiation involved.

Deep Vein Thrombosis- Always look at the bigger picture!, Therese Herlihy, Diagnostic Imaging, School of Medicine University College Dublin

Background:
Deep vein thrombosis (DVT) is a frequent medical condition, which can become fatal if a patient develops a pulmonary embolism (PE). This case is of a 57-year-old lady who presented to the emergency department complaining of pain and swelling of her left leg. The patient also had associated shortness of breath and abnormal menstrual bleeding with no associated cause or explanation.

Ultrasound Findings:
The ultrasound examination incorporated a B-mode and colour Doppler assessment of the left leg veins. The external iliac vein, common femoral vein, femoral vein and superficial veins were all patent, compressible and showed augmented flow. The distal popliteal and peroneal veins did not compress and an echogenic area with minimal blood flow was seen within the distal peroneal vein. This echogenic matter indicated a DVT of the distal veins when compression technique was applied. The patient then proceeded to have a transabdominal and transvaginal ultrasound to investigate the abnormal bleeding. The transvaginal ultrasound on both B-mode and power Doppler indicated a cervical lesion.

Discussion:
Following the ultrasound examination, the patient became increasingly unwell and a Computed Tomography examination was performed. This concluded that the patient had a PE and anticoagulant medication was administered. The patient’s respiratory symptoms subsided following this. A pelvic Magnetic Resonance Imaging examination was performed confirming the presence of a malignant cervical mass and the patient was scheduled for surgical removal of the lesion. This case study demonstrates an unusual outcome following ultrasound evaluation of lower limb DVT and the associated cause.

Conclusion:
Ultrasound played an essential role in the diagnosis of a calf DVT. As no other risk factors for DVT were present, the abnormal menstrual bleeding needed to be rapidly investigated and the cervical mass found on the pelvic ultrasound provided a rapid diagnosis and aided patient management.
Pyogenic Flexor Tenosynovitis as a result of a foreign body and the role of ultrasound, Andrea Kadrou, Birmingham Children’s Hospital Birmingham City University

Background:
Boy X was referred from his GP to the plastic hand surgeons at a specialist children’s hospital. The history given verbally from the patient it was that post trauma his right index finger has been swollen and tender for nearly 2 months. He visited his local hospital where he had plain radiographs the same day as the trauma but as no evidence of a foreign body was seen, he was discharged from the hospital and visited his GP a week later as the swelling and pain continued. The GP referred the patient to hand surgeons at a specialist paediatric hospital for an expert opinion.

‘Boy X’ was seen in the hand clinic where the plastic surgeon felt that an ultrasound scan would be a good first line of investigation followed by an Magnetic Resonance Imaging (MRI) scan to rule out the unknown aetiology of the right index finger pain and swelling. The radiology department was able to offer the ultrasound scan immediately following the outpatient appointment on the same day.

Case Report:
The ultrasound scan showed a 3mm foreign body within the tendon sheath of the flexor tendon with evidence of tenosynovitis. "Boy X" felt his symptoms began after an incident in which he fell into a rose/thorn bush’

The patient then went for an MRI scan two days later where the foreign body was not seen – the MRI images and report will be included on the presentation to appreciate the value of ultrasound in the detection of small wooden foreign bodies

Discussion:
Ultrasound is a proven unique modality in the detection and localisation of foreign-body as well as in diagnoses of associated complications, including pyogenic flexor tenosynovitis as in this case. It is quicker and cheaper than any other imaging modality, non-invasive with no known side effects and it is easily repeatable.

Metastatic Endometrial Carcinosarcoma, Clare McFadyen, Ultrasound The University of Cumbria

Background
Endometrial Carcinoma is one of the most invasive malignancies of the female reproductive system. Statistics from Cancer Research (2015) state that uterine malignancy is the fourth most common cancer in females. Approximately 9,300 new cases of uterine cancer were diagnosed in the United Kingdom in 2014, with the majority occurring in the endometrium. Endometrial carcinosarcoma has an increased tendency to metastasise early, with the liver being reported as an atypical metastatic site.

Case report:
A nulliparous 64-year-old female presented to the one stop post-menopausal bleeding clinic following recurrent episodes of vaginal bleeding. The patient declined transvaginal ultrasound, therefore an endometrial thickness of 5mm was obtained transabdominally, prompting further investigation. Hysteroscopy examination revealed the presence of a 30 x 12 x 7mm endometrial polyp, which pathology results concluded to be comprised of carcinosarcoma. An abdominal and pelvic Computed Tomography scan revealed no further presence of disease. The patient underwent an abdominal hysterectomy, bilateral oophorectomy, omentectomy and removal of the para-aortic and pelvic lymph nodes. A follow up appointment was arranged within 6 months’ time.

Five months after initial diagnosis the patient presented to clinic with fatigue and right sided abdominal pain. An ultrasound scan revealed a 12cm heterogenous mass within the right lobe of the liver. A pathological specimen concluded the mass was a metastatic component of carcinosarcoma. The patient received palliative chemotherapy, but unfortunately passed away five months after presenting with right upper quadrant pain.

Discussion
Following recommendations from Nice Guidelines (2015) regarding post-menopausal bleeding, in which an urgent appointment is arranged within 2 weeks, one stop clinics ensure diagnostic tests and interventions are carried out in a timely manner. Further cross-sectional imaging is paramount following a diagnosis of endometrial carcinoma, in order to assess the extent of disease and construct treatment plans.
Ultrasound diagnosis of possible scrotal filariasis: Mobile mega sperm a differential, Rubabb Mahmood, Clifford Amadi, Ultrasound Queen’s Medical Centre, Nottingham

Filariasis (Lymphatic filariasis) is primarily caused by a bite to the skin by an infected mosquito, which allows the invasion of filarial nematodes (roundworms) transferring themselves to the lymphatic system, where they nest and multiply. Research has shown that about 120 million people are currently infected, of which 65% are in the South-East Asia and 30% in Africa.

This disease has demonstrated a life span of about 15 years and has been found to cause swelling of the limbs and male genitalia which results in both physical and social disabilities. Although there is low prevalence of this disease in Europe, it is not uncommon for people who travel to endemic regions, to contract this disease. Therefore, there is a need to bear this in mind while checking patients during scan.

Ultrasound appearances demonstrate bulky, dilated and ectatic lymphatic channels of the epididymis with associated mobile, echogenic foci (live filarial worms) representing the typical ‘filarial dance sign’, exhibiting “to and fro” movements in an appropriate clinical context. However, there is a fine line between the sonographic appearance of the filarial dance sign and post vasectomy entrapped mobile mega sperm cells. Therefore, with high prevalence of vasectomy in the UK (21% of men of reproductive age compared to the rest of the world) an accurate patient clinical history is vital in distinguishing between the two, ensuring exclusion and paving the way to explore other possible differentials in such cases.

The case to be presented describes the differential diagnosis of mobile echogenic foci along the right epididymal body over the region of maximum tenderness with the patient’s long travel history to parts of India and Kenya.

The use of ultrasound to support palliative care in a hospice setting, Jo Eastman, Saint Francis Hospice, Romford

This study is a retrospective audit of 341 scans carried out by the author (an experienced sonographer) over a 5 year period in an adult hospice.

The World Health Organisation describes palliative care as “an approach that improves the quality of life of patients and their families facing the problems associated with life-threatening illness, through the prevention and relief of suffering by means of early identification and impeccable assessment and treatment of pain and other problems, physical, psychosocial and spiritual”. Ultrasound imaging is a valuable resource that has been widely used in hospitals for many years. Its usage has been slow to develop in hospices despite improvements to the cost of machines and their accessibility. It can help clinicians make what are often difficult management decisions at a crucial point in a patient’s life.

This talk will present a review of the experience of establishing the provision of an ultrasound scanning service in an adult hospice setting. Over the course of five years, 341 scans were carried out on 305 patients, with an age range of 25 to 96. Indications for scans included suspected urinary retention, DVT, and assessment of abdominal ascites or pleural fluid. A wide range of pathologies were found, from disease progression to gallstones accounting for pain. The author will offer practical suggestions for scanning in these challenging but rewarding circumstances.

Conclusion:
The author has been able to demonstrate that a hospice based ultrasound service is achievable, effective and safe. Clinicians value the greater certainty available with the use of sonography when signs and symptoms are subtle or complex, while patients appreciate not having to travel for imaging.

The Multiparametric Sonographer, Andrew Hunter, Pamela Parker, Oliver Byass, Ultrasound Hull and East Yorkshire Hospitals NHS Trust

Sonographer role development has been well established within the local ultrasound service for many years. 2001 saw the training of the first sonographer within this Trust to undertake trans rectal ultrasound guided prostate biopsy procedures (TRUS). The service has expanded and there is now a well-established team of 6 sonographers performing TRUS.
Changes in prostate cancer pathways, coupled with cancer targets, has led to increased pressure to innovate and improve the service provided in terms of turnaround times, reduced infection rates and increased diagnostic biopsy yield. To this end fusion guided TRUS (fTRUS) was developed in 2015 to aid targeting specific lesions identified on multiparametric MRI (m MRI). This fTRUS service has been developed, and is now provided, predominantly by two of the TRUS sonographers.

Demand for prostate imaging and biopsy has risen recently in light of increased publicity due to high-profile celebrities being diagnosed with prostate cancer. In addition, there is a move towards pre-biopsy MRI given the benefits of targeted biopsy. These changes have resulted in increased demand for radiologist skills at a time when there are significant recruitment issues and pressures from other service areas.

Given that fTRUS requires an understanding and interpretation of mMRI to ensure the correct area is targeted during the biopsy procedure the sonographers providing this local service began to develop such skills. A solution for increasing fTRUS and mMRI demand has been to formalise the sonographers skill development into an in-house mMRI reporting training programme. Using radiologists reports as the gold standard the sonographer reporting skills have been assessed.

Integrating prostate MRI reporting by sonographers into practice has demonstrable benefits to patient care and contributes to the delivery of a sustainable, safe and timely pathway. The role and benefits of the multiparametric sonographer is described in this presentation.

Early post-operative ultrasound for renal transplant: What not to miss, Karis McFeely1, Thomas Davies1, Matthew Murphy1, Catherine Gutteridge2, 1Radiology Peninsula Radiology Academy, 2Radiology Derriford Hospital

Ultrasound (US) is the preferred imaging modality for evaluation of renal transplants in the immediate post-operative period and long-term follow up. This is namely due to its accessibility, inexpensive and non-invasive qualities. Furthermore, patients can remain monitored on the hospital ward with the scanning performed portably if necessary.

Upwards of 3300 renal transplants were performed in the U.K in the last financial year 1009 living, 1404 Donation after brain death (DBD) and 934 donation after circulatory death (DCD) with an estimated 5000 or more patients on the waiting list (1, 2).

At Derriford Hospital, as the tertiary referral centre for the South West, a total of 57 renal transplants were performed within the same time period: 17 living, 18 Donation after brain death (DBD) and 22 donation after circulatory death (DCD). 21 patients (39%) underwent renal ultrasound prior to hospital discharge.

If there are concerns in the early post-operative period, ultrasound may be used to evaluate and diagnose complications. The principal aim is to identify those complications which may benefit from urgent surgical intervention. These include renal vein thrombosis, renal artery thrombosis, arterial kink, and large perinephric collections.

This paper demonstrates typical post-surgical sonoanatomy and identifies common early complications of renal transplant that can be depicted sonographically and are essential not to miss.

References:
http://www.giveakidney.org/why-we-need-more-donors/)

Sonographic appearances of mid and long term renal transplant complications, Thomas Davies1, Karis McFeely1, Matthew Murphy1, Catherine Gutteridge2, 1Radiology Peninsula Radiology Academy, 2Radiology Derriford Hospital

Ultrasound (US) is the preferred imaging modality for evaluation of renal transplants in the immediate post-operative period and long-term follow up. This is namely due to its accessibility, inexpensive and non-invasive qualities.

Upwards of 3100 renal transplants were performed in the U.K in the last financial year. An estimated 5000 or more patients remain on the waiting list (1, 2).

During the mid and late post-operative period and at routine follow-up, ultrasound may be used to evaluate the transplant and diagnose complications. It is important to understand that different complications occur at different stages following a transplant. The complications seen at this stage are often managed medically, or with the assistance of interventional radiology. These include rejection, peri-nephric collections, vascular stenosis, ureteric stenosis, renal calculi, malignancy and recurrence of original pathology.

In this imaging review we aim to demonstrate typical post-surgical sonoanatomy and identify common mid and late urological, vascular and neoplastic renal transplant complications seen in the follow up period.
References:
http://www.giveakidney.org/why-we-need-more-donors/

Splenic artery pseudoaneurysm, a rare complication of pancreatitis: Case Report, Anne Hurleston,
Ultrasound Stockport NHS Foundation Trust

Background:
Splenic artery pseudoaneurysm is a rare finding associated with chronic pancreatitis, acute pancreatitis, pancreatic pseudocyst or abdominal trauma. Formation of a splenic pseudoaneurysm is thought to be attributed to digestion of the splenic artery by pancreatic enzymes, the artery wall weakens forming a pseudoaneurysm.

Case Report:
A 79 year old male was referred to ultrasound with known liver cirrhosis as part of a routine 6 monthly hepatoma screening. The patient had a history of chronic pancreatitis and a cholecystectomy 6 years ago.

The ultrasound examination revealed an incidental, ill-defined complex mass in the left upper quadrant which measured 58mm in diameter with turbulent arterial flow noted on Colour Doppler.

A follow up CT scan confirmed a giant pseudoaneurysm arising from the splenic artery sited within a thick walled pseudocyst; there was no evidence of acute contrast extravasation to suggest rupture.

The remainder of the pancreas showed progressive atrophy and calcification in keeping with chronic pancreatitis.

The splenic vein was occluded as a consequence of previous pancreatitis with upper abdominal venous collaterals noted along with secondary gastric varices.

Due to a high risk of rupture the patient was referred to hepatobiliary vascular specialists.

A follow up CT several weeks later demonstrated a heterogenous structure within the tail of the pancreas most likely a combination of necrosis and chronic pseudocyst with the comment that the previously reported splenic artery pseudoaneurysm had spontaneously thrombosed.

Discussion:
This case was an incidental finding; patients usually present with bleeding or abdominal pain. Almost half of patients who present have a concomitant pseudocyst.

Embolization is one method of choice for treatment alternatively surgical or conservative management.

Ultrasound has the benefit of being readily available, a real-time dynamic assessment with no contrast required and relatively low cost.

Sonographic evaluation of sciatic nerve damage in a symptomatic patient following pellet shotgun injury, Gabriel Constantinescu, Min Hui Ho, Mr Raju Ahluwalia, Kings College Hospital NHS Foundation Trust

Aim:
To accurately determine the level and extent of sciatic nerve injury in a victim of pellet gunshot assault to the left lower limb.

Material and Methods:
Upon initial plain film and CT assessment to exclude bone and vascular trauma, high resolution, sonographic evaluation of the right sciatic nerve was performed in a victim of shotgun assault, with sciatic nerve symptoms.
Results:
Two dedicated MSK Radiologists performed high-resolution ultrasound evaluation of the sciatic nerve for the patient.

Although the sciatic nerve remained in continuity (no nerve transection seen), at least 3 pellets were identified within the nerve sheath in the upper and mid-left thigh.

Conclusion:
Sonographic assessment of sciatic nerve for pellet injury is relatively fast, accurate, reliable and has significant advantages over modalities such as plain film, CT, and MRI evaluation, which cannot precisely identify the relationship between pellets and nerve. The sonographic evaluation is also non-invasive.

Professional Issues

Isle of Wight Peer Review, Deborah Beare, Diagnostic Imaging Isle of Wight Healthcare NHS Trust

Sonographer is not a protected title recognised by the HCPC at present but there is continuing work to change this. Once this happens there is likely to be a more robust expectation for review and regulation of work practices within the ultrasound profession.

There remains no national requirement for regulation of sonography practice within a very diverse group of ultrasound practitioners. There is, however, a need for practicing Sonographers to regularly audit the quality of their work, identify any potential errors and plan CPD and training needs around the outcomes.

The BMUS Peer Review Toolkit was launched at the BMUS conference in Cardiff in 2015. The Toolkit was introduced into practice on the Isle of Wight in January 2016. There was early enthusiasm to use the toolkit to benchmark our work but it has been difficult to maintain the process for a number of different reasons.

We have also found that the toolkit and peer review process has had some unexpected and sometimes adverse effects on our practice and throughput. We have continued to use the toolkit and adapted our practice in some areas as a result of the outcomes.

The toolkit provides a benchmark for assessing the quality of imaging and reporting but does not include a review of professional practice outside of these processes. We believe that a full QA review should include all of these processes so we have added systems to include these to our overall QA programme.

Are we doing enough to protect patients?, Julie Burnage, JB Imaging Solutions

Whose responsibility is it to ‘police the practitioners’?

Everyone of us has colleagues we would want to scan us if we were in need and it is highly likely that everyone of us also has a list of colleagues (past or present) whom we would not want to scan us.

But what are we doing about it? How are we protecting patients from people who we wouldn’t have scanning our friends and family?

What are employers/managers/commissioners/providers doing to ensure that those performing ultrasound are doing what their CV/references/agency say they can do and to a level deemed acceptable?

Where are lines of accountability drawn and who draws those lines?

Breathing a sigh of relief when we ‘get rid of’ a poor performer is understandable but it is also unacceptable to do nothing else.

I believe that the health and safety of patients is being compromised and until the industry as one puts strategies in place to ensure that information is shared, we are all complicit in the harm that comes from turning a blind eye.
Veterinary

Hepatic diseases differentials in dogs and cats, Monika Lobacz, Radiology Davies Veterinary Specialists

Differential diagnosis divided for focal or multifocal disease: Differentiation of hepatocellular carcinoma with hepatocellular adenoma cannot be done alone with ultrasound, CT contrast is needed. Hepatocellular carcinoma: central (79%), marginal enhancement (93%) in the arterial phase; cyst like lesions (93%), capsule formation (93%) & hypodensity in portal (86%) and equilibrium phase (93%). Hepatic adenoma: - diffuse enhancement pattern during the arterial phase 57% which was also found in nodular hyperplasia 60% but never in hepatocellular carcinoma; - contrast retention more frequent then other groups; Nodular hyperplasia: isodensity in the equilibrium phase, likely to have capsule structure 20%.

Target lesions were associated with malignancy in 67% instances. However may represent benign nodular hyperplasia, pyogranulomatous hepatitis, cirrhosis, chronic active hepatitis and others. Hematoma: The internal appearance changes as it ages. Acute haemorrhage <24hr old is echogenic; within the 1st week hematoma -> becomes more hypoechoic and better defined, with a mixture of solid and fluid components. Over the next several weeks, the hematoma becomes increasingly less distinct as fluid is resorbed and spaces are filled with granulation tissue. Acute abdomen in case of liver lobe torsion - may mimic hepatic hematoma, it is hypoechoic or mixed echogenicity, use Doppler – absent or reduced blood flow. Left lateral liver lobe predisposed in large breed dogs.

Diffuse liver diseases: hepatic congestion due to right sided insufficiency such as: 1) Cardiac tamponade causing increased pressure within the CVC -> hepatic veins appear dilated, the liver is enlarged and diffusely hypoechoic; 2) Caudal vena cava obstruction. Hepatomegaly due to the endocrine diseases: hyperadrenocorticism, hypothyroidism, diabetes mellitus, hepatitis and due to neoplasia. Linear branching mineral opacities in canine liver may be due to the previous cholangiohepatitis – incidental finding – predisposed CKCS.

Biliary tract diseases: Gallbladder wall thickening: cholecystitis, edema, cystic mucosal hyperplasia, rarely neoplasia.

Gallbladder mucocele suspected rupture - to cut or not to cut? All depends on the clinical presentation of the patient. Clinical signs, although sometimes absent, include abdominal pain, inappetence, fever, vomiting, and icterus. Predisposition with hyperadrenocorticism.

Distention of the intrahepatic biliary tracts indicates biliary obstruction >7days long.

Small animal musculoskeletal ultrasound, Olivier Taeymans - Diagnostic Imaging Dick White Referrals

Ultrasound is very suitable for examining musculoskeletal structures. It is too often forgotten as a complementary imaging modality to radiographs, and instead should be considered as a logical next step before resorting to using more expensive imaging modalities.

Most musculoskeletal applications require a high-frequency (>10Mhz) linear transducer. Very superficial structures may require the use of a stand-off pad to display these structures at a greater image depth, where image resolution is better.

Most common indications are evaluation of the tendons surrounding the shoulder (biceps, supraspinatus, infraspinatus), soft tissue abscesses, and foreign bodies.

Other tendinous structures that are commonly evaluated are the psoas muscle insertion, the gastrocnemius origin, the common calcaneal tendon insertion, the abductor pollicis longus, patellar ligament, and the abdominal wall.
Joint effusion, synovial proliferation, joint neoplasia, myositis, and muscle tumours can also be evaluated, whereby ultrasound can further assist in obtaining samples for cytology/histology or guide the injection of steroids.

Despite not being able to travel through healthy bone, ultrasound can be very helpful in assessing pathologically affected bone. Monitoring fracture healing by differentiating fibrous vs. bony callus formation and assessing vascularisation of the callus, diagnosing osteomyelitis, bone tumours, as well as detecting small osteophytes not detectable on radiograph are occasionally performed.

Less rewarding results have been reported for the diagnosis of hip dysplasia, avascular necrosis of the femoral head, medial coronoid pathology, osteochondrosis of the shoulder and tarsal joints, as well as assessing cranial cruciate ligaments, articular cartilage, and menisci.

What difference has ultrasonography made in Veterinary Anaesthesia, Maja Drozdzynska, Veterinary Anaesthesia Dick White Referrals

In the last few years the use of ultrasound increased significantly in the field of Veterinary Anaesthesia.

For many loco-regional anaesthesia techniques, ultrasonography serves as a useful alternative or complementary technique to the use of peripheral nerve stimulator. Due to direct visualisation of targeted nerves it allows for local anaesthetic dose reduction, increased block precision and reduced risk of nerve damage.

Furthermore, ultrasonography allowed to develop completely new group of loco-regional anaesthesia techniques called intrafascial/compartmental blocks. They facilitate predictable anaesthetic spread via use of anatomical fascias. Due to hypoechoic character and superficial location of most fascias these blocks are classified as low-risk and easy to master loco-regional techniques. The serratus plane block designed for thoracic wall procedures and transversus abdominis plane block for abdominal procedures will be presented as an examples.

Finally, ultrasonography is currently used for peripheral nerve/plexuses catheter placement which due to the use of differential block phenomenon, allows for more effective management of acute postoperative pain.

Overall, ultrasonography due to improvement and widening the spectrum of available loco-regional anaesthesia techniques facilitates the way towards opioid-free analgesia in veterinary profession.

Prevalence and clinical significance of the medullary rim sign identified on ultrasound of feline kidneys, Amy Ferreira, Rachel Marwood, Tom Maddox, Jeremy Mortier, University of Liverpool

The medullary rim sign (MRS) is a recognised ultrasonographic (US) feature of feline kidneys that has been identified in normal and diseased kidneys. The objectives of this study were to determine the prevalence of the MRS in a population of cats from a referral hospital and identify if the presence, or any specific US features, of the MRS are associated with renal disease.

Renal US images from 661 cats were reviewed and cases with a MRS identified. An equal number of time control cases without a MRS were collected and compared in a retrospective case-control study. Medical data retrieved included: age, weight, sex, breed, biochemical results, urinalysis results and final clinical diagnoses. US images and reports were reviewed and the MRS presence, thickness, intensity, symmetry, changes on repeat US scans as well as additional renal US findings were recorded. Associations between independent variables and the MRS were examined with conditional and unconditional logistic regression.

In the 661 reviewed cases, 243 (36.8%; 95%CI 33.1-40.1%) showed a variation of the MRS; thin and thick medullary rims were identified in 133 (54.7%) and 110 cases (45.3%) respectively. A thick MRS in the presence of additional renal findings (loss of corticomedullary definition, pyelectasia and reduced size) was associated with renal disease (P=0.03). The presence of a thin rim only, was associated with an absence of renal insufficiency, although this was not a significant association. There was an association between the presence of MRS and a final diagnosis of feline infectious peritonitis (P= 0.045). Hypercalcemia was not associated with the presence of MRS (P=0.52).

The MRS is a common finding in cats. Based on these results a thin MRS is usually a nonspecific finding not associated with renal insufficiency or hypercalcemia. A thick MRS in combination with other US findings is associated with renal disease.
New technologies for clinical and preclinical research into ultrasound therapy and imaging

Opening the blood brain barrier with an implanted ultrasound device for increasing the penetration of Carboplatin into the brain: Preclinical and clinical results, Cyril Lafon, LabTAU INSERM, Michael Canney, Carthera, Ahmed Idbaih - Pitié Salpêtrière Hospital Paris APHP, Alexandre Carpentier, Pitié Salpêtrière Hospital Paris APHP

The blood-brain barrier (BBB) limits the penetration of most drugs into the brain. Pulsed ultrasound in combination with injected microbubbles can transiently disrupt this BBB to increase the passage of drugs to brain tissue. An implantable unfocused ultrasound source operating at 1MHz, SonoCloud, was used to repeatedly disrupt the BBB in patients with recurrent glioblastoma (GBM) prior to carboplatin chemotherapy. The goal of the presentation will be to describe recent preclinical work on carboplatin activity in glioma models as well as an update on the clinical work.

Experiments were first performed in a primate model in order to assess the Carboplatin chemotherapy distribution after BBB disruption. Then, efficacy of combined carboplatin and BBB disruption was evaluated on mice bearing orthotopic human GBM xenografts. A first-in-man clinical trial at the University Hospital Pitié Salpêtrière, APHP, Paris, France was conducted. GBM patients with tumor recurrence had surgery to implant the SonoCloud device. It was then operated monthly in a <10-minute procedure in conjunction with IV administration of carboplatin and microbubbles. Patients were monitored clinically and T1w contrast-enhanced MR images were used to visualize BBB disruption.

BBB disruption resulted in a significant local increase of Carboplatin concentrations in the primate model and an increase in survival in GBM mouse models. Twenty-five patients were included in the study and 85 sonications were performed. BBB disruption was visible on MRI and depended on the applied ultrasound pressure. No carboplatin-related neurotoxicity was observed and only minor related adverse events were observed.

Pulsed ultrasound with the SonoCloud device was well-tolerated and may increase the effectiveness of drug therapies in the brain. Future work will aim at improving the efficacy of the treatment by sonicating larger volumes of brain. Clinical trial information: NCT02253212.

Non-linear acoustic emissions from therapeutically driven contrast agent microbubbles, Jae Hee Song, Paul Prentice, CavLab, Medical and Industrial Ultrasonics, University of Glasgow

Non-linear emissions from microbubbles introduced to the vasculature for exposure to focused ultrasound, are routinely monitored for assessment of therapy and avoidance of irreversible tissue damage. Yet the bubble-based mechanistic source for these emissions may not be well understood.

In this presentation dual-perspective high-speed imaging at 210,000 frames per second (fps), and shadowgraphically at 10 Mfps, is used to observe cavitation from microbubbles flowing through a 500 μm polycarbonate capillary, exposed to focused ultrasound of 692 kHz at therapeutically relevant pressure amplitudes. The acoustic emissions are simultaneously collected via a broadband calibrated needle hydrophone system.

The observations indicate that periodic bubble-collapse shock waves dominate the non-linear acoustic emissions, including subharmonics at higher driving amplitudes. Contributions to broadband noise through variance in shock wave amplitude and emission timings are also identified. Possible implications for in-vivo microbubble-cavitation detection, mechanisms of therapy, and the conventional classification of cavitation activity as stable or inertial, are discussed.

Development of a 1-D Linear Phased Ultrasonic Array for Intravascular Sonoporation, Alexandru Moldovan1, Sandy Cochran2, Anthony Gachagan1, 1University of Strathclyde, Glasgow, 2University of Glasgow, Glasgow

Sonoporation is a minimally-invasive targeted drug delivery technique that relies on high power ultrasound to cavitate microbubbles (MBs) in the proximity of cells. The therapeutic purpose is to increase the cells’ permeability to exogenous agents and thus improve the efficacy of drugs in the treatment of various pathologies. External hepatic sonoporation is particularly difficult because of the ribs, which lead to heat deposition through ultrasound attenuation and beam scattering. Liver movement during patient respiration and the surrounding fat layer are other complications.

The objective of the current work is to design an 11-Fr catheter transducer that overcomes these issues by providing sonoporation intracorporeally from within a larger hepatic vein. The transducer is a 1-D linear phased array made of 1-3 piezocomposite material. The active materials investigated are ceramic (PZT-5H) and single-crystal (PMN-29%PT and 26%PIN-PMN-32%PT) and are coupled with a polymer filler (EpoFix, Struers, UK). The array behaviour was simulated using finite element modelling (FEM) (PZFlex, Onscale, Cupertino, CA, US) and its performance was improved through a parametric sweep of volume fraction and aspect ratio. The monitored output was peak negative pressure (PNP) which is related to cavitation threshold and sonoporation efficiency.
Two operating frequencies were investigated: 1.5 MHz, limited by transducer thickness compatible with catheter diameter, and 3.0 MHz, approximate MB resonance. The number of array elements is 24 for the lower frequency array and 32 for the higher frequency one. The array elevation is 2.4mm and the length is approximately 10mm. A total of 6 transducer arrays are currently being prototyped using the dice and fill method. The wiring of the transducers is achieved with a flexi circuit applied on the back of the array using conductive paint while the front of the transducer is grounded with a single electrode. A microballoon-filled epoxy backing is present to provide transducer robustness.

The parametric sweeps showed that one pillar per element in the array length direction achieves the lowest PNP for all cases. Electrical impedance simulations related reduced array elevation to lateral reflections and a decrease in overall performance. The two single crystal active materials proved to have similar efficiency but were 33% better than the ceramic. PNP at the focal point of the arrays was around −4 MPa at 1.5 MHz and −17 MPa at 3.0 MHz for an excitation signal of 200Vpp.

A single element transducer was designed and manufactured for model validation and sonoporation tests. The impedance measurements of the manufactured transducer indicate that the electrical resonance frequency aligns well with the model, but the coupling coefficient is reduced. Pressure maps in water show the beam shape is similar to the model and the PNP is half that of the model which is attributed to FEM assumptions of perfect electrical matching and higher piezoelectric coupling coefficients.

Future work will involve finalising the array fabrication and characterisation. The transducers will be tested for cavitation efficiency using high speed video imaging and passive acoustic mapping. Sonoporation tests will be performed in vitro and a liver phantom will be used for pressure and temperature measurements. Finally, the transducer will be implemented in a catheter.

QUANTuM: A CSO Knowledge Transfer Partnership focusing on quality assurance in MR guided High Intensity Focused Ultrasound, Fiammetta Fedele1, Bajram Zeqiri2, Daniel Butler1, Piero Miloro2, David Sinden2, Ilyas Shahzad1, Leo Monzon1, Hiba Abbas1, Filippo Bosio1, Maya Thanou2, Afshin Gangi1, 1Guy’s and St Thomas NHS Foundation Trust, 2Ultrasound and Underwater Acoustics National Physical Laboratory, 3King’s College London

Background:
MR guided High Intensity Focused Ultrasound (MRgHIFU) is a novel therapy that exploits MR guidance to deliver targeted sustained ultrasound heating to cancerous lesions [1-2]. In UK, the procedure has so far been NICE approved only for prostate cancer and benign tumours (fibroids), but has the potential to treat most cancer lesions and be used for neurological diseases and palliative care [1-4]. Treatment protocols and quality assurance procedures in place for such therapies are far behind those of other established techniques, such as radiotherapy. This lack of robust and standardised procedures is contributing to limit the diffusion of this therapy.

Case Report:
In July 2018 Guy’s and St Thomas NHS Foundation Trust and National Physical Laboratory have set-up a 12 months NHS Knowledge Transfer Partnerships, supported by the Chief Scientific Office (CSO), BMUS, the Institute of Cancer Research (ICR), Therapy Ultrasound Network for Drug Delivery and Ablation Research (ThUNDDAR), and the Institute of Physics and Engineering in Medicine (IPEM) and collaborators at King’s College London. The aim of the collaboration is to develop Quality Assurance and Treatment planning for MRgHIFU (QUANTuM) and facilitate dissemination of the procedure in UK.

Discussion:
This is a report on the first 5 months of collaboration, and the longer term plan; including both scientific and system leadership developments.

References:

Experimental variation in the measurement of ultrasound fields, Elly Martin, Bradley Treeby, University College London

Measurement based simulation of ultrasound fields is important for accurate prediction of in situ exposure levels in both ultrasound therapy and diagnosis. To ensure the simulations are accurate, thorough experimental validation is required. Sources of error can arise from both the model and measurement, and must be understood in order to determine the level of agreement between the model and the measurement.

This talk will discuss sources of error in measurements of acoustic pressure arising from properties of the source, measurement equipment and data processing. The variation in repeated measurements of ultrasound fields, as well as comparison of measurements of ultrasound fields made with a range of hydrophones will be presented and the implication for model validation will be discussed.

A new protocol for in vitro study of Low Intensity Pulsed Ultrasound (LIPUS), Jill Savva, Margaret Lucas, Helen Mulvana, Medical and Industrial Ultrasonics, School of Engineering, University of Glasgow

Background:
Clinical trials have shown that Low Intensity Pulsed Ultrasound (LIPUS) stimulates healing of fractured bone[1]. Numerous In vitro studies investigated LIPUS effects by measuring cellular markers of bone regrowth, such as Prostaglandin E2 (PGE2) [1]. However, comparison of results is difficult because the acoustic field is often inadequately characterised or affected by the set-up. In addition, mechanical bio-effects are the most likely mechanism of LIPUS stimulus[], implying peak negative pressure (p_-) is the best indicator of LIPUS dose. But the LIPUS field is usually defined by intensity (ISATA). This pilot study tested a robust and repeatable protocol for in vitro investigation of LIPUS, with a new definition of dose based on p_-.

Protocol:
Custom-built ‘biocells’ were seeded with MC3T3-E1 osteoblasts (50,000 cells/cm²) and incubated overnight. The biocells consisted of circular 3D-printed frames (VeroGray™) bounded by 6µm-thick Mylar (Goodfellow, UK) forming an acoustically-transparent window and cell growth surface. Cells and media were injected via self-sealing septa (Merck, UK).

A purpose-built transducer (Ferroperm PZT27, 25mm diameter) was driven with a LIPUS pulse (frequency 1MHz, pulse width 200µs, repetition rate 1kHz) to produce maximum peak negative pressures (p_̂_-) up to 500kPa at 100mm from the front face. Beam patterns were measured with a 0.5mm needle hydrophone (Precision Acoustics, UK). The average LIPUS dose was estimated by averaging p_- across the biocell window area (p_(-,SA)). Transmission measurements through the biocell window confirmed the acoustic field was not altered.

After incubation, biocells were filled with media and mounted so the cell layer was 100mm from the transducer. They were then exposed to 20 minutes LIPUS (p_̂_- = 0kPa to 500kPa) in a tank of sterilised water at 37±2°C. After exposure, all but 5ml of media was removed and the biocells incubated for 20 hours. PGE2 concentration in the media was measured by Enzyme-linked Immunosorbant Assay (Abcam AB133021) and microplate reader (Tecan, AT).

Results:
PGE2 up-regulation was significantly enhanced at p_̂_- = 100kPa (p_(-,SA) = 21kPa), corresponding to ISATA close to that of typical LIPUS fields (Figure 1).

![Fig 1 PGE2 Concentrations in growth media for a range of peak negative pressures](image)
Discussion/Future Work:
To date, the ultrasound exposure method has only been repeated once, but the results give early confidence in the methodology. However, cell adhesion was an issue and future work will focus on developing the method to improve this, plus the robustness of the ‘biocell’ frames and tank temperature variation. Cell proliferation will also be considered. The final method will enable a controlled investigation of optimum LIPUS fields, focussing on low frequency, to provide quantitative assessment of how ultrasound can promote bone healing at frequencies representative of commercial ultrasonic osteotomy devices.

Machine learning for cavitation detection, David Sinden, National Physical Laboratory

This talk presents some work in progress on applying techniques from machine learning to cavitation detection.

Machine learning can be used to find generalizable predictive patterns from a training data set. This predictive capability aims at forecasting unobserved outcomes, without necessarily knowing how a system fully works. Indeed, one of the advantages of machine learning is that it can be effective when the data is acquired without a carefully controlled experimental design, when there is variability between experimental setups, or in the presence of complicated nonlinear interactions.

However, a robust algorithm requires the selection and extraction of a number of features. A feature is an individual measurable property or characteristic of the phenomenon being observed. Ideally, features should be independent, informative, and discriminating, encapsulating all the required information about a system.

The majority of the literature on cavitation detection has been based on statistical methods, typically using integrated broadband noise as the dominant feature for determining the thresholds at which inertial cavitation is likely to occur. There is an increasing recognition of the need for standardisation in both the detection and the reporting of cavitation activity.

In this talk a number of features, extracted from both time- and frequency-domain information from both continuous and pulsed exposures in water are described and a classification algorithm presented. The advantages and disadvantages of the features and the experimental consequences of attempting to capture all the possible features is discussed, as well as possible extensions to the include models which can distinguish between types of cavitation, or attempt to predict quantities from a given exposure.

Modulating brain activity with focused ultrasound: Feasibility, challenges and recent breakthroughs, Jean Francois Aubrey, Institut Langevin, Paris

Transient ultrasonic neuromodulation has been demonstrated in rodents[1-2], non human primates[3] and humans[4]. Transcranial ultrasonic brain therapy at frequencies higher than 500kHz requires adaptive focusing to compensate for the aberrations induced by the skull bone. Nevertheless, challenges remain, such as how to illicit sustainable effect, and how to precisely target deep seated target in human brains ([4] was limited to cortical stimulation). We will show here that the effects of ultrasonic neuromodulation can be extended to 30min by optimizing the ultrasonic parameters. Moreover, we will present a novel low-cost technique to focus ultrasound beams deep into human brains. Transcranial focusing is currently achieved by using multi-element arrays driven by a dedicated multi-element electronics. A growing number of elements was used to improve the focusing: 64 elements in 2000 [5], 300 in 2003 [6], 1024 in 2013 [7], and with more to come. We will present some of the salient results obtained pre-clinically and clinically with such multi-element transcranial devices. Nevertheless, we will show that comparable transcranial focusing can be achieved with a novel approach in rupture with the current trend. It consists in a single- element covered with a 3D silicone acoustic lens of variable and controlled thickness. Similar lenses have been introduced in the past to perform single or multiple focusing patterns in homogenous propagating media [8] but recent 3d printing and milling capabilities make tailor-made 3D lenses a feasible option for transcranial adaptive focusing[9].

A preclinical study of the combinatorial effects of pulsed focused ultrasound and immune checkpoint inhibitors in pancreatic cancer, Petros Mouratidis, Marcia Costa, Ian Rivens, Gail ter Haar, Joint Department of Physics, The Institute of Cancer Research: Royal Marsden NHS Foundation Trust

The clinical benefit of immunotherapy has not yet been realised in pancreatic cancer, which is characterised by a low antigenicity and dense stroma profile. Focused ultrasound (FUS) can be used in the treatment of solid tumours, either by inducing necrosis (using ablative temperatures), or by creating cavitation which results in mechanical disruption of the stroma. Both of these processes may regulate the immune response and make the tumours more susceptible to immunotherapeutic treatments. In this study, pancreatic tumours have been exposed to pulsed FUS and co-treated with immune checkpoint inhibitors (ICIs) to explore whether control of the tumour growth can be achieved. Syngeneic orthotopic KPC pancreatic tumours (KrasLSL.G12D/++; p53R172H/+; PdxCre tg/+) were grown in immune-competent murine C57BL/6 subjects (>15 weeks old). Tumours were exposed to pulsed FUS using the small animal Alpinion VIFU 2000 Therapeutic ultrasound platform. Pulsed FUS exposure parameters were designed to result in cavitation (power = 200 W, duty cycle = 1 %, pulse repetition frequency = 1 Hz, 25 repeats) in the target tissue. A combination of anti-CTLA4 and anti-PD-1 antibodies were administered intraperitoneally 3 days before treatment, and every 3 days thereafter. Tumour growth was estimated using high frequency ultrasound imaging, and with callipers at the time of culling. Pulsed FUS treatment of pancreatic tumours resulted in cell and collagen depleted regions in the tumours, associated with an extensive rearrangement of the extracellular matrix. No skin damage was observed. Combination of a single pulsed focused ultrasound treatment with administration of ICIs resulted in improved control of tumour growth relative to the monotherapies and sham exposures. Additional results for the systemic and localised abundance of immune cells will be presented.

Frequency optimisation for opening the blood-brain barrier, Bradley Treeby1, Elly Martin1, James Choi2, Andrew Hurrell3, 1University College London, 2Imperial College London, 3Precision Acoustics

Dorchester, significant advances have been made in the development of therapeutic agents for the treatment of neurodegenerative diseases, psychiatric illnesses, and brain cancers. However, the blood-brain barrier (BBB) presents a major impediment to the delivery of larger molecules into the interstitial fluid of the brain, which severely limits the clinical efficacy of these agents. There is now well-established evidence that ultrasound can reversibly and selectively disrupt the BBB. One remaining challenge in the transcranial application of ultrasound is that the skull can lead to significant attenuation and aberration of the transmitted waves, which affects the quality of the ultrasound focusing, and thus the targeting and specificity of the BBB opening. This can be overcome using lower frequency ultrasound waves (below 500 kHz), however, this increases the presence of standing waves, which can have a similarly deleterious effect on treatment specificity. The purpose of this ThUNDDAR-funded pilot study is to carefully examine the interplay between the ultrasound drive parameters and the transmission loss, aberration, and standing waves caused by the skull. In this presentation, we report preliminary results from the study.

Non-bubble mechanisms of sonothrombolysis, Carr Everbach, University of Oxford

Sonothrombolysis or ultrasound-accelerated thrombolysis is the dissolving of blood clots with ultrasound (and often microbubbles). Exogenous microbubbles, under appropriate conditions, can greatly accelerate sonothrombolysis, but there is also evidence that endogenous microbubbles form during clotting. Overpressure experiments show that about half of the acceleration due to ultrasound persists in the absence of bubbles. What is the mechanistic basis of this effect? Based on fundamental physical and biochemical mechanisms, the presentation will highlight outstanding problems with understanding the non-bubble components of sonothrombolysis.

Photoacoustic imaging with photothermal therapy and gold nanorods for a new approach to lung cancer management, Oscar Knights1, Thomas Carpenter1, David Cowell1, Steven Freear1, James McLaughlan1, 1School of Electronics and Electrical Engineering, University of Leeds, 2Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital
Plasmonic gold nanorods (AuNRs) show potential for use in a range of cancer diagnostics and therapeutics when combined with photoacoustic imaging (PAI) and/or plasmonic photothermal therapy (PPTT). Generally in PPTT, continuous wave (CW) lasers are used to destroy cancerous tissue through bulk heating. However, in order to add a diagnostic component through PAI, a pulsed wave (PW) laser is needed. If PPTT can be achieved using PW lasers then combined theranostic applications with the same laser system is possible. Additionally, AuNRs can be many different sizes but exhibit equivalent surface plasmon resonances (SPRs) so the size may be significant in the efficacy of these modalities. Endobronchial ultrasound (EBUS) is routinely used as part of the patient pathway in order to stage and guide needle biopsies of suspected cancerous regions. EBUS, if combined with nanorods, PPTT and PAI could present a new approach to both identify and treat lung cancer, one of the deadliest forms of cancer, without the need for surgical intervention and/or, radio or chemotherapy.

A tuned 7 ns PW laser was used to irradiate AuNR solutions at their specific SPRs across a fluence range of 1-40 mJ/cm² to determine AuNR melting thresholds. The photoacoustic (PA) emissions from AuNRs with four different lateral widths (10, 25, 40 and 50 nm) across a range of equivalent concentrations were measured, and their PA emission amplitudes calculated via a technique similar to PA image reconstruction. These were also imaged in a per-clinical photoacoustic system, the inVision MSOT 128 to provide direct comparison. The four AuNR sizes were used for PPTT in a lung cancer cell line (A549), irradiated for 5 min with the same PW laser (fluence below the melting threshold) as well as a CW laser (1.5 W/cm²) for comparison. The results indicate that larger AuNRs produce stronger PA signals but are more prone to melting compared with the smallest AuNRs (10nm), suggesting that AuNR size has a significant effect on PA response. The PPTT efficacy of the four AuNR sizes on an A549 cell line was determined and the temperature profile monitored via a thermal imaging camera. These results suggest that a PW laser can achieve increased cell death without bulk heating. An in-house diagnostic ultrasound imaging system was used to mimic EBUS in tissue mimicking phantoms demonstrating the potential to use PAI with this established imaging modality.

A Technique for Predicting HIFU Acoustic Intensity Using Only Electrical Measurements, Chris Adams¹, Thomas Carpenter¹, David Cowell¹, James R. McLaughlan¹,², Steven Freear¹, School of Electronics and Electrical Engineering, University of Leeds, Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital

Acoustic intensity (AI) is the most common way to control the volume of thermally-formed lesions. It can be measured accurately using a radiation force balance (RFB) or estimated using hydrophone measurements. Whilst RFBs are the gold standard, their expense obstructs new researchers from accurately calibrating their HIFU exposures. Both measurements are performed with the transducer in water (i.e. free field), which are then converted into situ parameters through the application of various models of attenuation. Thus, the introduction of a technique for monitoring acoustic output in real-time would greatly benefit treatment planning and the clinical use of HIFU.

The peak excitation voltage may be used as a control, but it requires calibration and is not immune to variances in transducer manufacturing or differing excitation circuitry. In this study, it was found that a current probe could be used to predict AI. In the frequency domain, voltage and current waveforms were multiplied to find electrical power. The real components of the power were numerically integrated and a conversion efficiency of 80% was presumed to predict the acoustic power. To find acoustic intensity, the focal volume was approximated using the transducer dimensions. This technique was tested by lesioning ex vivo chicken breast at three AIs (700, 1000, 1400 W/cm²) using a switched circuit and a linear amplifier. Compared with using an RFB, the AI and lesion volume were the same (p > 0.05) irrespective of the hardware used when using the described technique. Using only voltage to predict AI produced significantly different intensities and lesion sizes (p << 0.05). The results show that it is possible to predict AI without using an RFB. This may make HIFU research more accessible to new researchers and be useful for characterising large multi-element transcranial arrays quickly.

Development of an experimental platform for rapid prototyping of UmTDD methods, Roger Domingo-Roca¹, Joseph C. Jackson², Helen Mulvana¹, Medical and Industrial Ultrasonics, School of Engineering, University of Glasgow, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering University of Strathclyde

Abstract:
Ultrasound has been shown to trigger drug release [1] and enhance the uptake of low- and high-weight molecules in cells and tissues [2,3]. Although ultrasound itself can induce biological effects, ultrasound-mediated targeted drug delivery (UmTDD) uses microbubbles (µB) to enhance ultrasound effects.

UmTDD (Fig. 1) can reduce cytotoxic drug dose, improve local drug delivery, and reduce suffering in cancer treatments. Although ultrasound interaction with blood vessels and µBs has been thoroughly studied, the mechanisms and efficiency of UmTDD in real systems remains unclear, limiting the utility in vitro systems to optimise UmTDD protocols.
Developing UmTDD protocols appears to be an extremely challenging task given all the parameters to take into consideration in real systems, being capillary size, shape, and morphology the most important features, as they play a relevant role in µB flow and behaviour, directly affecting UmTDD efficiency. Furthermore, experimental testing of UmTDD presents high ethical costs due to the use of animal testing [4,5]. In this work we present a new approach to control all the relevant parameters for UmTDD treatments from micro-computer tomography (µCT) data. This approach uses the stereolithography (STL) 3D-printing technique (allowing 3D-printing microchannel widths down to 200 µm) to develop capillary phantoms based on the real systems obtained from the µCT scans, which can further be used to develop controlled protocols allowing a deeper and more detailed study of the phenomena involved in UmTDD with minimal animal use.

Fig. 1: Microbubble (µB) enclosed within a blood capillary. The µB vibrates when driven by ultrasound. The vibration of the µB inside the microvessel results in fluid and wall deformations that promote the transport of therapeutic agents (small blue circles) from the microvessel into the extravascular space.

Fig. 2: Micro-computed tomography (µCT) processed image of mice mesentery. Several capillaries can be observed forming different networks of contrasting morphologies.
Fig. 3: Representation of the different parameters that can be controlled during 3D-printing of microchannels. The main parameters are the angle θ between the two bifurcated branches, and the width of the microchannels. Another important factor to take into consideration during 3D-printing is the orientation of the part, as it will have a direct impact on 3D-printing resolution. Hence, it can be seen how the so-called stairstepping effect is more pronounced at both lower values of θ and at lower microchannel widths.

References

Antenatal Diagnosis of Congenital Heart Disease over a two-year period in an NHS tertiary referral centre, Victoria White1, Gillian Coleman1, Amita Mahendru2, 1Obstetrics Nottingham University Hospitals NHS Trust, 2Feto-maternal medicine Nottingham University Hospitals NHS Trust

Background:
Antenatal detection of congenital heart defects (CHD) allows parents to make decisions about pregnancy outcomes and improves neonatal morbidity and mortality.

By auditing all the cases of CHD detected antenatally we can ensure we are meeting national standards for detection and management of CHD. This would help us to improve detection rates as well as identify areas of improvement in the management of these women.

Method:
A retrospective audit of CHD cases diagnosed antenatally between January 2016 and December 2017. Patient demographics, cardiac views recorded, time-frames for diagnosis and pregnancy outcome were compared against FASP standards, the East Midlands Network referral pathway and national CHD data.

Results:
23 cases of CHD were identified with 87% defined as severe. The mean maternal age was 28 years with 57% being nulliparous. None of the women had any medical problems and the average BMI was 24.8kg/m2.

There was 100% compliance with the FASP cardiac views which were completed by 23 weeks gestation.

74% were live births, 17% ended in termination of pregnancy and one baby was stillborn. The mean birthweight was 2486 grams with a mean gestational age at delivery of 36 weeks and 5 days.

100% patients were reviewed by paediatric cardiology as per the regional referral pathway. 26% of cases had associated genetic causes.

Conclusions:
The screening service in this trust is meeting FASP and regional standards with regards to CHD in the majority of cases. There is inconsistent reporting of undiagnosed serious CHD at birth and in the immediate neonatal period or in cases of stillbirth.

The national congenital anomaly reporting is now online, this will allow us to improve our reporting and identification of cases. The next step is to set up a local database which will allow more regular comparison with national standards.

Challenges to professional autonomy: Australian sonographers’ experiences in communicating adverse outcomes to pregnant patients, Samantha Thomas, Kate O’Loughlin, Jillian Clarke, Faculty of Health Sciences University of Sydney

Background/Purpose:
Unlike the United Kingdom, Australia is yet to formalise the sonographer practitioner role allowing for independent reporting and communication with patients. This research explored the role of Australian sonographers in communicating adverse outcomes in obstetric ultrasound. Advances in ultrasound imaging place sonographers as the frontline practitioner with patients expecting to know scan results immediately. Communicating adverse outcomes is often left to the sonographer who may feel unsupported and conflicted in deciding whether to convey this information to the patient.

Methods:
Members of the Australasian Sonographer’s Association qualified to perform obstetric ultrasound completed a survey (n=249) seeking their views and practices on reporting an adverse outcome. Both quantitative and qualitative data were derived from the 33-item instrument.
Results:
The majority of participants reported that conveying an adverse outcome should be part of the sonographer role, however they acknowledged the difficulty of doing this without recognition of their professional status and autonomy, and acknowledged that it was, to some degree, dependent on the diagnosis. Most agreed they would communicate a definitive diagnosis such as ‘no foetal heart beat’, whereas it was more difficult with a foetal abnormality.

Conclusions:
Policy and protocols recognising the professional status of sonographers and providing a supportive framework for their practice are needed so that all stakeholders (patients, sonographers, radiologist/sonologist) understand and accept the sonographer role. This should occur irrespective of the type of practice or location so patients can expect uniformity. The United Kingdom model of the sonographer practitioner with independent and autonomous reporting and communication could be a starting point for Australia’s sonographers.

To FASP or Not to FASP? Investigating the impact of storing only FASP recommended anomaly images on patient recall rate, Catherine Sampson, Gillian Coleman, Ultrasound, Nottingham University Hospitals NHS Trust

Background:
Anomaly scans are conducted at Nottingham University Hospitals (NUH) according to the national Fetal Anomaly Screening Programme (FASP) guidelines. Historically imaging of the anomaly scan followed locally set guidelines which included storing a minimum of 23 images to PACS. A retrospective audit of anomaly scan recalls showed that the departmental recall rate was 20% in January and 22% in February 2018; however for some sonographers this was much higher, with the highest recall rate of a sonographer being 93%.

Methods:
The ultrasound clinical specialists worked with individual sonographers with the highest recall rates. It was found that scan technique was good however several sonographers were recalling patients if they could not achieve all of the specified images. Some sonographers were also storing up to 70 images per anomaly scan.

Consultation with the obstetricians and Fetal maternal medicine specialists was undertaken and an agreement was made to trial a new way of working within the department. For a two month period the number of specified images to be stored was reduced to 9 to assess the impact on the recall rate and sonographers confidence in completing anomaly scans.

Results:
During the trial period, the recall rate for the department reduced to 8%, with individual rates reducing from 93%, 87% and 54% to 19%, 20% and 7% respectively.

Sonographer views on the new ways of working were also found to be positive.

Conclusion:
By employing new guidelines during the trial period, confidence levels of sonographers increased and the recall rates reduced. This had a positive impact on the scan capacity within the department. Recommendation for this to become a permanent change to guidelines has been approved and implemented as a new way of working.

Improving confidence of sonographers when performing obstetric Middle Cerebral Artery (MCA) Doppler, Catherine Elmes, Georgina Redman, Royal United Hospitals, Bath

Doppler ultrasound in obstetrics plays a vital role in identifying and monitoring those fetuses at risk of perinatal mortality or morbidity due to uteroplacental insufficiency (FMU, 2002). The middle cerebral artery (MCA) Doppler is fundamental in assessing fetal cardiovascular distress, anaemia and hypoxia. The Royal College of Obstetricians and Gynaecology (RCOG, 2014) suggests an abnormal MCA Doppler in a growth restricted fetuses has a predictive value for acidosis at birth and therefore should be used to time delivery. Therefore, in the appropriate situation, MCA Doppler assessment can be a useful addition to the umbilical artery Doppler assessment, thus improving perinatal outcome (Morris et al, 2012).

Performing accurate MCA Doppler assessment is an advanced technique, requiring a high level of operator skill for technically well acquired and optimised images to be produced (ISUOG, 2013). Currently, MCA Doppler is performed by consultants at the Royal United Hospital Bath or by fetal medicine specialist at the regional fetal medicine unit. Consequently, sonographers have limited exposure in performing MCA Doppler, impacting on the confidence and ability to perform the technique when required. Necas (2016) highlights the need for appropriate training and an awareness of the potential pitfalls, allowing technical expertise to overcome any problems that may impact the overall accuracy of diagnosis.
The aim of this pictorial review is to outline the optimum technique alongside the common pitfalls in performing MCA Doppler assessment and how to overcome these. This should act as a useful guide in standardising and improving the technique of acquiring an accurate MCA Doppler. Thus, improving the confidence of sonographers in producing optimum MCA Doppler and providing the clinicians with an accurate diagnosis to aid clinical decisions.

Evaluating expertise – is saving images a good thing, Titia Cohen-Overbeek, Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine Erasmus MC, Rotterdam, The Netherlands.

Objectives:
Since 2007 the 20 week fetal anomaly scan (FAS) is offered to all pregnant women as part of the national prenatal screening program in the Netherlands. In order to maintain and assess the quality of scanning an image audit is performed every 2 years. Due to the initial absence of national quality criteria for the assessment of ultrasound images obtained at the FAS, the Foundation Prenatal Screening Southwest region of the Netherlands developed a standardized qualitative image scoring method. We evaluated in 2 consecutive assessment periods whether this method influenced the scanning quality and whether quality was maintained.

Methods:
Each sonographer was requested to make three logbooks consisting of 25 anatomical and/or biometrical images per fetus. The examinations are selected by the auditing authorities. The images receive 1 credit per adequate magnification and plane and 1 credit if biometrical assessment is performed with correct caliper placement. A score of less than 75% is considered inadequate. The score is reported back to the sonographers. The logbooks are assessed by 4 experienced prenatal medicine physicians.

Results:
During the first round between 2012-2015 255 logbooks were assessed of 85 sonographers. The majority of the sonographers (86%) had a sufficient score but 12/85 failed the criteria. Reassessment of new logbooks within three month of the first quality control showed for 11 sonographers a sufficient score. One sonographer stopped scanning before reassessment. In the second round between 2016-2017 the logbooks of 87 sonographers were assessed. The percentage sonographers with a sufficient score was 93% and reassessment was required for 6 sonographers. Reassessment of new logbooks showed for 4 out of 5 sonographers a sufficient score and one sonographer stopped scanning.

Conclusions:
Qualitative assessment can induce a better performance of the 20 week FAS and create awareness for maintaining a high standard of scanning.

A retrospective study investigating the use of MCA/UA Doppler pulsatility index ratio as a prediction for interventions and poor obstetrics outcomes in the case of reduced fetal movements, Shelley Wyeth, Clinical Imaging Royal Cornwall Hospitals NHS Trust

Approximately 60,000 infants per annum are born growth restricted in the UK, 1000 of whom die as a result (Lynn et al. (2013). So, despite the changes and desire to improve the service there are still many babies that are being missed under the current protocols. With more pressure being put onto sonographers to produce accurate scans with multiple elements in packed patient lists are we producing the information that counts?

At the forefront of research into reducing the still birth rate in the UK mothers with reduced movements are a key population. Harran and Everett (2016) explain in their study that a fetus compromised by placental dysfunction and hypoxia undergoes a physiological response causing the redistribution of blood to the heart and brain, eventually manifesting itself as a reduction in movements. Latest research has informed the introduction of middle cerebral artery (MCA) Doppler readings to all reduced movements scans which has provided the possibility using the MCA/umbilical artery (UA) Doppler pulsatility index (PI) in the form of a ratio to identify intraterine growth restriction and intern the elusive ‘at risk’ fetus and this research aims to define its effectiveness and use.

Retrospective data of scans performed due to reduced movements along with the data collected at the time of birth have been collated and will be analysed. The aim of the project is to try and define the key factors that lead to a decision to intervene and may decrease the still birth rate and reduce the need for intervention. By using logistical regression statistical analysis, it may be possible to predict poor outcomes or likelihood of intervention. There are thousands of serial growth scans performed for higher risk pregnancies in the uk each year and the use of MCA/UA PI ratio could be expanded to these growth scans.
Dynamic Ultrasound Manoeuvre in Anterior Ankle Impingement, Nathakorn Piangcharoen, Sports Medicine Sheffield United Football Club

Background:
Ankle injuries are common in collision sport such as rugby. The researchers report that “ankle injuries account for between 8% and 20% of all injuries in professional rugby union league”. Commonly, the mean time lost from training and matches with ankle injuries is “61 days (range 21-240 days)”. So, making an accurate diagnosis whilst challenging may help direct the treatment, rehabilitation and return to play strategies in sports medicine.

Case Report:
The injured player was a 31-year-old semi-professional rugby player, playing in the position of inside-centre. He was complaining of severe pain on the left ankle with swelling and a degree of ankle instability. He has mentioned that he was tackled from behind forcing the ankle into an awkward position which became trapped between pitch and opposing player. The opposition also landed with full body weight on his left ankle. He was referred to see the physiotherapy sonographer for the ultrasound scan for a second opinion. The dynamic ultrasound manoeuvre was selected to finding the cause of the anterior ankle joint impingement syndrome. He was in the active standing position in the water bucket with ankle movement (neutral to dorsiflexion producing pain) during the investigation dynamically. There was a transverse calcific spur at the distal articular end of the tibia commonly called a “footballer's ankle”. As a result, he potentially has a lateral ankle sprain grade II and a big osteophyte of distal tibia. Finally, we referred him to the orthopaedic consultant who has agreed and recommended a removal of the osteophyte of the distal tibia by arthroscopy and return to the sport in four months.

Discussion:
This case study demonstrates that ultrasound imaging is very useful to confirm the physical assessment findings and diagnosis of ankle injuries especially, the dynamic evaluation is fascinating in presenting following the mechanism of anterior ankle impingement.

The Groin: A case of a Hydrocoele of the Canal of Nuck, Khalida Jan, Radiology City Hospitals Sunderland

Background:
The Canal of Nuck (CoN) was first described after a 17th century Dutch anatomist, Anton Nuck in 1691. It is an embryological anomaly whereby the processus vaginalis which normally obliterates in the first year of life, remains patent providing a direct pathway into the female inguinal canal. Abnormal development of the CoN can lead to problems ranging from asymptomatic hydrocoele to herniation and incarceration of the pelvic organs. A female infant with an inguinal hernia should be thoroughly evaluated to determine whether the hernia contents contain fluid/uterus and/or ovaries. The ovaries are at increased risk of incarceration, torsion and subsequent infarction warranting urgent surgical intervention. Given the potential for morbidity, disorders of the CoN deserve greater awareness.

Case Report:
A 15 year old female presented for ultrasound assessment of a painless 3cm mobile lump in the right groin for > 1 week duration.? Lymph node. The child was otherwise healthy with no relevant medical history or trauma. Physical examination revealed a small visible, fluctuant, palpable inguinal mass. Scanning over the lump revealed a thick walled fluid filled compressible and reducible structure with movement of the fluid from the deep to superficial inguinal ring. The contralateral side revealed a similar but much smaller fluid filled structure. The appearances were consistent with bilateral hydrocoeles of the canal of Nuck.

Discussion:
A hydrocoele of the CoN is the female equivalent of a spermatic cord hydrocoele in males. Many clinicians including surgeons are not aware of this anatomical structure of the CoN and the pathology it may contain. Although this anatomic anomaly is a rare entity, understanding the anatomy and embryology of the CoN is an essential requisite for recognition and interpretation of the related findings.
Ultrasound confirmation of heterotropic new bone formation after distal biceps tendon rupture repair, Aarushi Gangahar1,2, Kate Kingston1, York Radiology Department, Leeds Radiology Academy

Background:
Heteroptropic ossification (HO) describes bone which forms in a location where it would not be usually seen such as muscle, soft tissue and ligaments.

HO can be divided into three main subtypes:
1. Myositis ossificans progressive – a rare genetic condition
2. Traumatic myositis ossificans – post trauma, muscle tear etc
3. Myositis ossificans circumscripta – without trauma, but occurring after neurological injury or burns.

This case report will focus on traumatic myositis ossificans, which is a common complication post distal biceps tendon rupture repair.

Case Report:
A 33 year old gentleman attended the York ED department following hyperextension injury to his left arm whilst at work, handling a heavy metal gate. MRI showed a distal biceps rupture with significant retraction, and a small distal triceps musculotendinous tear.

At repair the biceps tendon could not be reached with blunt finger dissection, a small proximal incision to the tendon was made.

A week post operatively, the patient removed their own backslab due to discomfort. He also went back to work on ‘light duties’ limiting lifting to 5kg. However, 2 months post operatively he re-attended A&E after feeling a popping sensation in his arm.

Plain film at that point showed heterotropic new bone formation adjacent to the radial tuberosity, and Ultrasound was requested to investigate whether the bone was within tendon, or whether there was avulsion.

USS noted that the ossification was separate to bone, but in continuity with the biceps tendon itself, with proximal tendon thickening and internal vascularity. There was also synovitis in the adjacent bicipital bursa. Myositis ossificans within the pronator teres was diagnosed.

Discussion:
The use of USS to accurately delineate bicipital tendon heterotropic bone formation has not been widely discussed, even though there are clear advantages in its use to guide surgical excision.

Ultrasound of bone fractures, Richard Beese, Radiology Queen Elizabeth Hospital,

Introduction:
Ultrasound has been shown to be more sensitive than X-ray in demonstrating bone fractures. This can be taken advantage of in the diagnosis of non displaced fractures such as rib, hip, sternum stress and toddlers tibial fractures. All of which are not visible using X-ray.

The real advantage of ultrasound is it is globally available unlike X-ray which is only available to 25 percent of the worlds population.

The author presents examples of bone fractures diagnosed by ultrasound with reference to established medical literature.
ABSTRACTS

General Medical Top Tips

Ultrasound of the bariatric patient – Pearls and Pitfalls, Pamela Parker, Hull and East Yorkshire Hospital Trust

Obesity is a common problem in the UK that’s estimated to affect around 1 in every 4 adults and around 1 in every 5 children aged 10 to 11. Imaging such patients can be a real challenge. This presentation aims to provide some tops tips in optimising the imaging of this common presentation. Top tips include ergonomics, imaging parameters and new technologies.

Physics

Probe acceptance testing, Nicholas Dudley, Radiation Protection and Radiology Physics Lincoln County Hospital

Background:
Guidelines for probe acceptance testing as part of a QA programme include electrical safety testing, physical inspection, uniformity assessment (for dropout), measurement of temperature rise and assessment of measurement accuracy. In our Trust testing has been extended to include a more critical assessment of in-air uniformity. The aim of the work described here was to summarise the findings over a 5 year period.

Methods:
The results of acceptance testing over a 5 year period, including an assessment of the uniformity of the in-air reverberation pattern, were analysed. Where possible, electronic probe testing was performed to further assess in-air non-uniformity. Image quality analysis performed at baseline testing was used as a source of further validation of the in-air uniformity assessment.

Results:
We have taken delivery of 233 new or replacement probes in 5 years; our reject rate was 16.7% (39 probes; physical defect: 7; non-uniformity: 32), although in 12 (31%) cases a single supplier declined to replace the rejected probes on the grounds that they were within manufacturing tolerances. Uniformity assessment has been validated by electronic probe tester results showing anomalies in sensitivity, pulse length, frequency and bandwidth. Beam forming issues, which were not part of our formal acceptance testing, have also been found for 1 probe model in association with in-air non-uniformity.

Conclusion:
Although no probes were rejected on the grounds of measurement inaccuracy, this element of testing should be retained as many patient examinations rely on accurate measurements. Physical inspection is an important part of acceptance testing, particularly in the context of infection control. In-air reverberation uniformity is a useful addition to acceptance testing and has been validated by electronic probe testing; unexpected anomalies should be referred to the supplier.

Ultrasound metrology at NPL: Past, present and future, Bajram Zeqiri, Ultrasound and Underwater Acoustics Group National Physical Laboratory

The safety assessment of medical ultrasound equipment demands measurement of important safety-relevant acoustic parameters in an objective, standardised and traceable way. This presentation reviews the history of ultrasound metrology at NPL, from its inception over forty years ago. Key developments will be described such the membrane hydrophone, and the commissioning of a primary standard for their calibration, based on a Harwell-developed Michelson interferometer that generated a step-change in uncertainty in relation to reciprocity. Today, many measurements made worldwide on the acoustic output characterisation of diagnostic imaging devices are linked to the NPL primary standard, providing traceability to the SI unit of length. Parallel developments in measurement capability for the other important quantity describing the ultrasound field, acoustic output power, will also be presented. An important route for the dissemination of the ultrasound standards lies in NPL calibration services, particularly for equipment manufacturers, but other mechanisms lay in technical standard contributions through IEC Technical Committee 87. The role of international key comparisons to underpin mutual recognition of measurement capabilities across national boundaries will be described. Other milestones tracing the development of NPL’s research activity are the assessment of thermal hazard, cavitation detection, and the study of techniques supporting the development of High Intensity Therapeutic Ultrasound.
The second half of the presentation will review current research activities that are being undertaken as part of the NPL Medical Physics Institute (Memphys). Areas being addressed include hydrophone calibration at increasingly higher frequencies that demand the commissioning of a new, more sensitive, primary standard. A key new thrust area for metrology lies in Quantitative Imaging, and the formative stages of work to support the clinical application of ultrasound elastography will be described, along with NPL's own phase-insensitive ultrasound imaging technology. The presentation will present a forward look at developments in metrology in this area.

Is Ultrasound Safe? That’s a definite maybe!, Prashant Verma, Department of Medical Physics, Sheffield Teaching Hospitals NHS Trust

This talk will focus on safety issues from the perspective of a clinical scientist working in medical ultrasound. The last decade has seen a rapid increase in the use of ultrasound for clinical diagnosis and therapy. Recent progress and developments in the area of ultrasound safety will be reviewed, including new pulse sequencing technologies such as Acoustic Radiation Force Imaging (both p-SWE and 2D SWE), Contrast Enhanced Ultrasound, Plane Wave Imaging and therapeutic technologies such as HIFU and ESWL. Specific areas of clinical application such as Obstetrics, Gynaecology and Neonatal Ultrasound will be covered. Issues related to transducer repair and their implications for safety will also be discussed. Guidelines from various international and national bodies will be discussed. A broad overview of selected published literature will be presented covering topics such as the usefulness of safety indices, the relaxation of acoustic output restrictions and user awareness of ultrasound safety.

Cosmetic ultrasound – The exciting world of body sculpting and skin tightening, Barry Ward Northern Medical Physics and Clinical Engineering Freeman Hospital

Over the last ten years or so, several different cosmetic ultrasound devices have been developed and approved for sale in Europe and the USA, mainly for body sculpting and skin tightening applications. Of these, the most widely used in the UK are probably

(a) the Solta Medical "VASERlipo" device, operating at 36 kHz, and used in ultrasound-assisted liposuction, i.e. an invasive form of body sculpting;

(b) the Syneron Candela "UltraShape" device, operating around 200 kHz, and used for non-invasive body sculpting, e.g. the reduction of fat around the waist;

(c) the Solta Medical "Liposonix" device, operating at 2 MHz, again used for non-invasive body sculpting – a "high-intensity focused ultrasound" technology;

(d) the Merz Aesthetics "Ulthera" device, operating at 4 or 7 MHz, used for non-invasive skin tightening, e.g. around the neck – another "HIFU" technology.

In this talk, these four devices and the technologies behind them are described. In addition, the "clinical" effectiveness and safety profiles of the devices are outlined, the number of private clinics in the UK using them is estimated, and the regulatory framework governing their use in this country is briefly considered.

QUANTuM: A CSO Knowledge Transfer Partnership focusing on quality assurance in MR guided High Intensity Focused Ultrasound, Fiammetta Fedele\(^1\), Bajram Zeqiri\(^2\), Daniel Butler\(^1\), Piero Miloro\(^2\), David Sinden\(^2\), Ilyas Shahzad\(^1\), Leo Monzon\(^1\), Hiba Abbas\(^1\), Filippo Bosio\(^1\), Maya Thanou\(^3\), Afshin Gangi\(^1\), ‘Guy’s and St Thomas NHS Foundation Trust, ‘Ultrasound and Underwater Acoustics National Physical Laboratory, ‘King’s College London

Background:

MR guided High Intensity Focused Ultrasound (MRgHIFU) is a novel therapy that exploits MR guidance to deliver targeted sustained ultrasound heating to cancerous lesions \([1-2]\). In UK, the procedure has so far been NICE approved only for prostate cancer and benign tumours (fibroids), but has the potential to treat most cancer lesions and be used for neurological diseases and palliative care \([1-4]\). Treatment protocols and quality assurance procedures in place for such therapies are far behind those of other established techniques, such as radiotherapy. This lack of robust and standardised procedures is contributing to limit the diffusion of this therapy.

Case Report:

In July 2018 Guy’s and St Thomas NHS Foundation Trust and National Physical Laboratory have set-up a 12 months NHS Knowledge Transfer Partnerships, supported by the Chief Scientific Office (CSO), BMUS, the Institute of Cancer Research (ICR), Therapy Ultrasound Network for Drug Delivery and Ablation Research (ThUNDDAR), and the Institute of Physics and Engineering in Medicine (IPEM) and collaborators at King’s College London. The aim of the collaboration is to develop Quality Assurance and Treatment planning for MRgHIFU (QUANTuM) and facilitate dissemination of the procedure in UK.
Discussion:
This is a report on the first 5 months of collaboration, and the longer term plan; including both scientific and system leadership developments.

References:

High Frame-Rate Triplex Cardiac Imaging using Diverging Waves
Luzhen Nie1, David M. J. Cowell1, Thomas Carpenter1, James R. McLaughlan1, Arzu A. Çubukçu2, Steven Freear1, 1School of Electronic and Electrical Engineering University of Leeds, 2East Cheshire NHS Trust

Background:
Using ultrasound to decipher interconnections between myocardium motion, vortex dynamics in the left ventricle (LV) and microbubble-assisted myocardial perfusion, could be of clinical use for the early diagnosis of cardiac dysfunction. However, obtaining this information simultaneously is not possible using commercial systems, limited by a low frame rate due to the typical line-by-line scanning mode. Recent engineering advances in research ultrasound platforms have opened avenues for better understanding of cardiac dynamics through high frame rate (HFR) imaging. By transmitting unfocused diverging waves (DWs), a B-mode frame can be reconstructed from a single DW transmission by parallel beamforming. This approach can achieve frame rates up to 10 kHz, which is an order of magnitude faster than most clinical scanners. Whilst the image degradation due to the lack of transmit focusing when using DW, can be alleviated by coherent compounding of echoes from multiple steered beams.

Methods:
In this study, a triplex cardiac imaging technique, i.e. B mode, contrast mode and 2-D vector blood flow mapping in the LV, was demonstrated with a HFR of 250 Hz by using a research system transmitting DWs. Nonlinear imaging using amplitude modulation (AM) (2.78 MHz, MI 0.12) was considered for contrast echocardiography, specifically highlighting nonlinear signals of the SonoVue microbubbles.

Results:
The figure shows a snapshot from the DW scanning sequence. All three frames were produced with the identical 16 DWs, where 8 full-amplitude transmissions were used for fig. a and all 16 DWs were properly combined to construct the AM contrast image fig.b. The combination of 2-D vector flow mapping and B-mode imaging is presented in fig.c.

Conclusion:
This study demonstrated that with the same pulse sequence, B-mode imaging, contrast-mode imaging and 2-D vector blood flow mapping could be obtained simultaneously at a frame rate of 250 Hz by transmitting DWs.
HAVE YOU RENEWED YOUR MEMBERSHIP?
You can now pay your membership fee quarterly, using Direct Debit, starting as low as £23.02! Benefits of Membership include:

Journal Ultrasound
Read and publish your ultrasound research

Ultrapost and BMUS News
Newsletters providing society and ultrasound news

Professional Guidance
Access to professional guidance documents prepared by industry experts

Study Days and Conference
Reduced registration fees for attending our BMUS events

EFSUMB and WFUMB
Reduced registration fees for EFSUMB and WFUMB events

CDP Online
Gain CDP points using our online CDP portal

MEMBERSHIP RATES 2019
*rates apply only for members opting for Direct Debit

Sonographer/Doctor in Training/Clinical Scientist / Physicist £92.08
Consultant Sonographer/Consultant Clinical Scientist/Superintendant Sonographer £105.56
Consultant Radiologist/GP/Veterinarian £118.52
Vascular Scientist/AAA Technician/Technical Staff £79.36
Retired/Unwaged/Maternity Leave (existing member) £68.80
Student (electronic single year) £28.00
Preceptorship Year 1 (existing student member) £50.00
Preceptorship Year 2 (existing student member) £75.00
European Member £97.67
International Member (Outside UK and Europe) £122.00

Renew Your Membership Online
Hassle free payment process. Uninterrupted membership

BMUS Margaret Powell House, 405 Midsummer Boulevard, Milton Keynes MK9 3BN
www.bmus.org Tel:+44020 7636 3714
Study Days 2019

March
BMUS General Medical Ultrasound Study Day
22nd March, Glasgow, Scotland

April
BMUS Gynaecology Ultrasound Study Day
4th April, Manchester

May
MSK Study Weekend
11th - 12th May, Keele University

BMUS Contrast Enhanced Ultrasound Study Day - in conjuction with Bracco
17th May, Hull

July
BMUS Head & Neck Study Day
3rd July, London

September
MSK Dissection Cadaveric Course (lower limb)
21st September, Keele University

BMUS Paediatric Study Day
27th September, Bristol

October
BMUS Obstetric Ultrasound Study Day
4th October, London

All courses carry BMUS CPD Points.
For all of 2019’s programmes and to register, please visit www.bmus.org