Renal Ultrasound
(Basic Principles)
BMUS Study Day

Rosie Conlon
Clinical Specialist Sonographer

NATIONAL REHABILITATION HOSPITAL

Dun laoghaire, Dublin Sat 15th October 2016
“Bones can break, muscles can atrophy, glands can loaf about and even the brain can sleep without immediate danger to survival. BUT when the kidneys fail.... Neither bone, muscle gland nor brain could carry on.”

PREPARATION

• 500mls 1 hour before, avoiding micturition.
• Catheter clamped 1.5 hours before.
• Fluids by PEG 1.5 hours before.

• Operator Dependant
• Real Time
• Reproducible
• Non-invasive
• Inspiration
WHAT? - PROTOCOL

- Both Kidneys
- Urinary Bladder
- +/- Residual Volume
- Pelvic Surveillance
- Aorta
- Local protocol pertinent to the population
- Full bladder

The most important step in diagnosis is realising that it might exist.
RIGHT KIDNEY-TECHNIQUE

• A 3.5-5 MHz probe is typically used to scan the kidney. For the right kidney, have the patient lie supine and place the probe in the right lower intercostal space in the midaxillary line. Use the liver as your “acoustic window” and aim the probe slightly posteriorly (toward the kidney). Gently rock the probe (up and down or side to side) to scan the entire kidney. If needed, you can have the patient inspire or exhale, which allows for subtle movement of the kidney.

• Obtain longitudinal (long axis) and transverse (short axis) views.
NORMAL

Renal Ultrasound (Basic Principles) and BMUS Study Case
LEFT KIDNEY-TECHNIQUE

- For the left kidney have the patient lie supine or in the right lateral decubitus position. Place the probe in the lower intercostal space on the posterior axillary line. The placement will be more cephalad and posterior than when visualizing the right kidney. Again gently rock the probe to scan the entire kidney.

- Obtain longitudinal and transverse views
Approach to Scanning

- Right kidney scanning approach: anterior, lateral, posterior
- Liver is the acoustic window
- Left kidney: requires a posterior approach, through the spleen
- Air-filled bowel impedes anterior scanning
NORMAL ANATOMY

- 9-12 cm long, 4-5 cm wide, 3-4 cm thick
- Gerota’s fascia encloses kidney, capsule, perinephric fat
- Sinus
 - Hilum: vessels, nerves, lymphatics, ureter
 - Pelvis: major and minor calyces
- Parenchyma surrounds the sinus
 - Cortex: site of urine formation, contains nephrons
 - Medulla: contains pyramids that pass urine to minor calyces. Columns of Bertin separate pyramids
Renal Ultrasound (Basic Principles) and BMUS Study Case

Normal Anatomy

- Renal capsule
- Cortex
- Medullary pyramids
- Minor Calyx
- Major Calyx
- Sinus
- Medulla
- Ureter
- Renal artery
- Renal vein
NORMAL ANATOMY

- Kidneys are retroperitoneal, T12 - L4
- Right kidney is lower than the left kidney
- Right kidney is posterio-inferior to liver & gallbladder
- Left kidney is inferior-medial to the spleen
- Adrenal glands are superior, anterior, medial to each kidney
THICKENED BLADDER WALL

Renal Ultrasound (Basic Principles) and BMUS Study Case
BLADDER VOLUME

Renal Ultrasound (Basic Principles) and BMUS Study Case
Ureteric Jets
Male Anatomy

Prostate Gland

Seminal Vesicles
OVER-HYDRATION

Pre-Micturition

Post Micturition

Renal Ultrasound (Basic Principles) and BMUS Study Case
INTERVENTIONAL
Variants

- **Dromedary humps:**
 - Lateral kidney bulge, same echogenicity as the cortex
- **Hypertrophied column of Bertin:**
 - Cortical tissue indents the renal sinus
- **Double collecting system:**
 - Sinus divided by a hypertrophied column of Bertin
- **Horseshoe kidney:**
 - Kidneys are connected, usually at the lower pole
- **Renal ectopia:**
 - One or both kidneys outside the normal renal fossa
VARIANTS

Pelvic Kidney

Dromedary Hump
Extra Renal Pelvis

- **Extra Renal Pelvis** refers to the presence of the renal pelvis outside the confines of the renal hilum. It is a normal variant that is found in ~10% of the population.
- The **renal pelvis** is formed by all the major calyces. An extra-renal pelvis usually appears dilated giving a false indication of an obstructive pathology.
 - **CT for clarification.**
- **Avoid confusion with** hydroureter or **PUJ obstruction**
Renal Ultrasound (Basic Principles) and BMUS Study Case
HORSINSHOE KIDNEY

Renal Ultrasound (Basic Principles) and BMUS Study Case
Cross Fused Ectopia

- Cross fused ectopic kidney.
- The left kidney is fused to the lower pole of the right kidney.
RENAL SCARRING

Renal Ultrasound (Basic Principles) and BMUS Study Case
MULTICYSTIC DYSPLASTIC KIDNEY

- Right kidney in a new-born shows no normal renal parenchyma and the right renal fossa filled with multiple simple appearing cystic structures c/w MCDK. The cysts did NOT communicate
ANGIOMYOLIPOMA

• This is a homogeneous, highly echogenic, usually rounded lesion in the renal parenchyma containing blood vessels, muscle tissue and fat, as the name suggests. They are usually solitary, asymptomatic lesions, found incidentally, although larger lesions can haemorrhage causing haematuria and pain.
MULTIPLE ANGIOMYOLIPOMAS

- Also associated with Tuberose sclerosis, they tend to be multiple and bilateral.
OBSTRUCTIVE UROPATHY

GRADING SYSTEM - SUBJECTIVE

• Mild
 Minimal separation of calyces

• Moderate
 Dilation of major and minor calyceal system

• Severe
 Marked dilation of the renal pelvis and thinning of the renal parenchyma
RANGE OF HYDRONEPHROSIS

Normal

Mild

Moderate

Severe

Renal Ultrasound (Basic Principles) and BMUS Study Case
HYDRONEPHROSIS

Intrinsic acquired

- Renal lithiasis
- Neoplasm (renal, ureteral, bladder)
- Papillary necrosis
- Ureterocele
- Blood clot
- Neurogenic bladder
- Anticholinergics
- Pregnancy, PID, uterine prolapse
- Diuretics
- Vesico-ureteral reflux
- Diabetes insipidus

Intrinsic congenital

- Stenosis (ureteral, urethral, meatal)
- Adynamic ureter
- Spinal cord defects
- Duplication of the ureter
- Ureterocele
HYDRONEPHROSIS

Mild Hydronephrosis

Renal Ultrasound (Basic Principles) and BMUS Study Case
HYDRONEPHROSIS

Moderate Hydronephrosis
Severe Hydronephrosis
Small Kidneys

- Unilateral (may be bilateral)
 - Chronic infections
 - RAS Renal Artery Stenosis
 - Hypoplastic Kidney
 - Always bilateral
 - Chronic glomerulonephritis
 - Hypertensive nephropathy
 - Collagen Vascular Disease
ENLARGED KIDNEYS

Always Unilateral

- Compensatory hypertrophy
- Bilateral or Unilateral
 - Renal Mass
 - Hydronephrosis
 - Renal vein thromboses
 - Lymphoma
 - Amyloidosis

Always Bilateral

- PCK Polycystic Kidney Disease
- AGN Acute glomerulonephritis
- Amyloidosis

Renal Ultrasound (Basic Principles) and BMUS Study Case
Urolithiasis

Renal Calculi

Bladder Calculi
Fig. 3, 4 & 5 – Bladder stones with posterior shadowing clearly seen at US in distended bladder but not apparent on X-ray.
Staghorn Calculus
Bladder Diverticulae

- Diverticula of the bladder in infants and children are common and occur when bladder mucosa protrudes through a congenital defect in the detrusor muscle wall. Most are primary. Those secondary to obstruction or neurogenic dysfunction are less common than previously thought.
Renal Ultrasound (Basic Principles) and BMUS Study Case
Renal Ultrasound (Basic Principles) and BMUS Study Case
BLADDER CALCULI
Renal Ultrasound (Basic Principles) and BMUS Study Case

Renal Mass

- **Pyelonephritis:** sonographic appearance is most commonly normal, but you may find hypoechoic cortex and loss of demarcation between the outer cortex and middle pyramids and columns of Bertin.

- **Renal mass:** may have any echotexture (hyperechoic, anechoic etc.) and appear anywhere within the kidney

- **Transplant kidney:** a normal echotexture kidney, typically in a pelvic location
TRANSITIONAL CELL CARCINOMA

- Ultrasound images Large, transitional cell carcinoma in the upper pole of the RK. The changes are more subtle than those of renal cell carcinoma, and the renal outline remains intact.

- Transitional cell carcinoma is the most common bladder tumour, occurring less frequently in the collecting system of the kidney and the ureter. It usually presents with haematuria while still small. It is best diagnosed with cystoscopy.
HYDRONEPHROSIS DUE TO TCC URETER

Renal Ultrasound (Basic Principles) and BMUS Study Case
US AND CT RENAL CA

Renal Ultrasound (Basic Principles) and BMUS Study Case
Renal Cell Carcinoma

- Large, heterogeneous mass which enlarges and deforms the shape of the kidney (Fig. below). The mass may contain areas of cystic degeneration and/or calcification. It has a predilection to spread into the ipsilateral renal vein and IVC.

- Colour Doppler usually reveals a disorganized and increased blood flow pattern within the mass with high velocities from the arteriovenous shunts within the carcinoma.

- Smaller RCCs can be hyperechoic and may be confused with benign angiomyolipoma. The latter has well-defined borders whilst an RCC is illdefined.
BURKITT'S LYMPHOMA

Renal Ultrasound (Basic Principles) and BMUS Study Case
NEUROBLASTOMA

Renal Ultrasound (Basic Principles) and BMUS Study Case
RENAL TRAUMA
POLYCYSTIC KIDNEYS

Renal Ultrasound (Basic Principles) and BMUS Study Case
Renal Transplants - Surgical Technique

- Usually heterotopic (placed in addition to the native diseased kidneys)
- Positioned in the extra-peritoneal pouch in the iliac fossa (usually the right) anterior to the iliacus and psoas muscles.
THE ROLE OF ULTRASOUND

B Mode imaging

- **Morphological appearances:**
 - PC dilation
 - Peri-renal fluid collections
- **Doppler:**
 - Colour /Power Perfusion
 - Spectral Doppler
 - Waveforms
- **Intervention:**
 - Guide Biopsy Procedures
 - Drain Fluid Collections
 - Placement of Nephrostomy Tubes
LS RENAL TRANSPLANT (USING EXTENDED FIELD OF VIEW)

Renal Ultrasound (Basic Principles) and BMUS Study Case
PERFUSION WITH POWER AND COLOUR DOPPLER
The main purpose of regular urology review is to preserve renal function with the ultimate aim of a non obstructed urinary system.

Urinary Tract Infections (UTI) are the most frequent medical complication in patients with Spinal Cord Injuries (SCI) and a major cause of morbidity.
Fig. 1 & 2 - US showing decompressed bladder around IDUC. X-ray in same patient confirming large calculus not visualised on US.
Fig. 3, 4 & 5 – Bladder stones with posterior shadowing clearly seen at US in distended bladder but not apparent on X-ray.
RESULTS

- Bladder ultrasound alone diagnosed 36% bladder calculi compared to 18% diagnosed by X-ray alone.

- US and X-ray combined diagnosed 46%.
BLADDER MUCUS

• In one patient, a focal, mobile area of increased reflectivity was demonstrated posteriorly in the bladder. No posterior acoustic shadowing was seen to suggest of calculus formation.

• On flexible cystoscopy no calculus identified, only mucus seen.
Renal Ultrasound (Basic Principles) and BMUS Study Case
CASE STUDY 2-VHL (VON HIPPEL LINDAU SYNDROME)

- renal lesions
 - renal cell carcinoma(s) (RCCs): usually of the clear cell type
 - 70% lifetime risk
 - RCCs present at an earlier age in those with vHL
 - renal cysts
 - can occur in up to 75% of cases
 - often tend to be bilateral and multiple

- Prognosis is poor, with a median survival of ~50 years, with the most common cause of death being RCC and cerebellar haemangioblastomas.
Renal Ultrasound (Basic Principles) and BMUS Study Case
Case Study 3

Renal Ultrasound (Basic Principles) and BMUS Study Case
THANK YOU FOR YOUR ATTENTION!

Rosie Conlon
rosie.conlon@nrh.ie