

BMUS Obstetric Study Day 2023 -Cardiac Recap and Interesting Cardiac Cases

Dr Chris Oakley

Consultant Fetal and Paediatric Cardiologist

Leeds General Infirmary

Objectives

- Indications for Fetal Echocardiography
- Normal Heart and Circulation
- Standard screening views
- Structural abnormalities for each screening view
- Rhythm Abnormalities

Indications for Fetal Echocardiogram

CHD suspected at anomaly scan/unable to obtain normal views	Maternal CHD/heart block	1 st degree relative with CHD/heart block
Fetal Arrhythmia (sustained HR <120 or >200 bpm)	Metabolic Disorders (poor control in early pregnancy)	History of cardiomyopathy
Increased NT - ≥3.5mm in first trimester or ≥6mm at mid trimester	Exposure to known teratogens	
Extracardiac anomalies associated with CHD	Confirmed TORCH infections	
Chromosomal anomalies associated with CHD	Autoimmune antibodies – Anti Ro/La	
Hydrops/pericardial or pleural effusion	NSAID medication in later pregnancy	
Risk of heart failure – TTTS, fetal anaemia, tumours etc		

• Fetal circulation

Postnatal circulation

Illustration by P. Brown, Medical Illustration Department, Leeds Teaching Hospitals

Screening Planes of the Fetal Heart

View 5: **3VT**

View 3: LVOT

View 4: RVOT

View 2: 4 Chamber

View 1: Situs

Situs View

Key Points

Determine left from right from fetal position

Ensure stomach left sided

Ensure abdominal aorta to left of spine

Ensure IVC anterior and to right of spine

4 Chamber View

Apex leftwards at 45° angle and occupies < $\frac{1}{2}$ thorax Balanced atria and ventricles - moderator band in RV Primum Septum present with TV offset to apex Ventricular septum intact

Normal heart rate, regular rhythm, good contractility

Yorkshire & Humber Congenital Heart Disease Network

caring about children

<2mm pericardial effusion

LVOT View

Key Points

Aorta committed to the posterior LV

Continuity of ventricular septum to aortic valve

LV outflow directed towards right shoulder

RVOT View

Key Points

RVOT arises anterior to LVOT

Outflow tract originating from the anterior RV

RVOT directed directly back towards spine

Normal crossover at 90⁰ to the LVOT

The Leeds Teaching Hospitals NHS Trust

3VT View

Abnormalities of 4 Chamber View – Atrioventricular Septal Defects

Atrioventricular Septal Defects - AVSDs

- Common abnormality with 4 chamber view_
 - 3 in 10,000 live births ¹
 - Strongly associated with trisomy 21
 - In fetal series, incidence reported 50-90%¹
- Can occur in isolation or associated with:
 - Heterotaxy syndromes
 - Tetralogy of Fallot 5%
 - DORV
 - Common arterial trunk

Abnormalities of 4 Chamber View – Hypoplastic Left Heart Syndrome

leeds children's hospital

Hypoplastic Left Heart Syndrome

- Unable to achieve biventricular circulation
- Requires multiple stages palliative surgeries
 - Norwood Procedure in infancy
 - Cavopulmonary shunt 4-6 months of age
 - Fontan completion 3-5years of age
 - Multiple cardiac catheterisations and possible surgeries in the interim
- UK National Data
 - 55-60% chance of survival to Fontan completion/5yrs
- 15% risk of death prior to 1st stage surgery ²

Abnormalities in LVOT/RVOT views – Transposition of the Great Arteries

caring about children

leeds children's

hospital

Transposition of the Great Arteries

Transposition of the Great Arteries

- 3.5 of 10,000 live births ¹
- 5-7% of all CHD
- 2nd most common cyanotic lesion
- 'Simple TGA' no VSD
 - Very rare to have chromosomal abnormalities

- In absence of other major structural abnormalities will require arterial switch operation in first few weeks of life
 - Up to 50% require a balloon atrial septostomy prior to surgery due to inadequate mixing

Abnormalities in LVOT/RVOT views – Tetralogy of Fallot

Tetralogy of Fallot

Tetralogy of Fallot

- 4 Chamber view Left axis deviation
- LVOT view Sub aortic VSD with aortic override
- RVOT view Pulmonary stenosis (degree varies)
- 3VT view PA smaller than arch and can be associated with right aortic arch

Tetralogy of Fallot

- Most common cause of cyanotic congenital heart disease
 - Prevalence 3-6 per 10,000
- Genetic/chromosomal associations in 30%
 - Most common Trisomy 21 and 22q11 deletion
- Varying degree of pulmonary obstruction
 - Minimal stenosis act like a VSD
 - Pulmonary atresia duct dependent pulmonary circulation
 - Absent pulmonary valve

Tetralogy of Fallot with PS – Transannular patch surgical repair

Pulmonary Atresia, VSD, MAPCAs – would require unifocalisation surgery

Tetralogy of Fallot – Absent Pulmonary Valve

Abnormalities in 3VT view – Right Aortic Arch

Right Aortic Arch

- Aorta passes to right of trachea and oesophagus and ductus arteriosus to left
 - Encircle central structures
 - Risk of compression to these structures
- Most common branching pattern is with aberrant left subclavian artery – 86% in recent review ³
- Symptoms occur in 25-30%
- Genetic associations in 8%⁴

Double Aortic Arch

Van Poppel MPM, Zidere V, Simpson JM, Vigneswaran TV. Fetal echocardiographic markers to differentiate between a right and double aortic arch. Prenat Diagn. 2022 Apr;42(4):419-427. doi: 10.1002/pd.6104. Epub 2022 Jan 28. PMID: 35060138

Abnormalities in 3VT view – Bilateral SVCs

Bilateral SVCs

- Persistent left SVC
 - Left SVC drains into the coronary sinus which therefore appears dilated
 - Right SVC drains in normal position into the right atrium
- Possible association with coarctation of the aorta
- Otherwise usually of no cardiac concern if isolated

Abnormalities of Situs View

Laterality Disorders/Isomerism/Heterotaxy Syndromes

- During development complex series of signalling arrangement to delineate left from right
 - Poorly understood
- Abnormalities with this causes laterality disorders
 - Proliferation of left or right sided structures
 - Absence of the opposite sided structures

Laterality Disorders/Isomerism/Heterotaxy Syndromes

	To left atrium	Usually normal	Anomalous drainage
	Single right SVC & IVC	Absent IVC with azygous continuation	Often bilateral SVCs and IVC same side as aorta
	Normal	Can be normal. Otherwise variable	Abnormal – common are AVSD, DORV, Pul stenosis/atresia, TGA, apex left or right
	Right sided	Midline	Midline
	Left sided	Polysplenia	Asplenia
	Stomach left	Stomach right with possible malrotation	Stomach right with possible malrotation
Rhythm	Sinus	CHB/slow sinus	Normal

Laterality Disorders/Isomerism/Heterotaxy Syndromes

- All laterality disorders from 1980-2017 ⁵
- 177 LAI, 100 RAI
- Major structural heart disease in all RAI and 91% of LAI. 40% LAI had CHB
- If CHB present, median postnatal survival was 0.2 months

Assessing Fetal Rhythm

- Uses mechanical events to ascertain temporal relationship between electrical events
 - I.e Atrial and ventricular contractions

Techniques

- M Mode
- LV inflow/outflow

Techniques

SVC/aortic flow

Pulmonary vein/artery flow

Atrial ectopics

- No treatment required most self resolve
- Small number (2-3%) go on to develop fetal tachycardia
- If >1 in 10 beats of ectopy, weekly/fortnightly local auscultation and referral if tachycardia present

Fetal Tachycardias

• Sinus tachycardia

- Consequence of another concern with fetus

- Anaemia
- Thyrotoxicosis
- Fetal distress
- Maternal fever
- Rarely exceed 200bpm

Supraventricular Tachycardias

- Rate usually over 220bpm
- Most common re-entrant tachycardia
 - 1:1 relationship
- Atrial flutter
 - Loss of 1:1 relationship

HdT-5.9Rx R:7.79 BG:70 BD:80

LGI 2nd Tri

The Leeds Teaching Hospitals NHS Trust

Precision+

A Pure

Fetal Bradycardia – Complete Heart Block

- Can be associated with:
 - Maternal anti-Ro and anti-La antibodies
 - Left Atrial Isomerism
 - Congenitally Corrected Transposition of the Great Arteries (ccTGA)
- Maternal anti-Ro or anti-La present
 - 2% risk of congenital complete heart block
 - If previous pregnancy affected risk increases to 20%

Acknowledgements and References

- Pictures from Leeds Teaching Hospitals and Yorkshire and Humber Congenital Heart Disease Network Fetal Heart Training Resource created by Sam Bainbridge and Jan Forster
- 1) Simpson J, Zidere V, Miller O et al. Fetal cardiology a practical approach to diagnosis and management. Springer
- 2)Lillitos P, Nolan O, Cave D et al. The fetal single ventricle journey to first postnatal procedure. A multicentre UK cohort study to be published
- 3) Oakley, C, Hurn, A, Suckling, C, et al. Impact on the trachea in children with prenatally diagnosed vascular ring formed by a right aortic arch. *Pediatr Pulmonol*. 2023; 58: 2275-2282. doi:10.1002/ppul.26463
- 4) Seale A, Vigneswaran T, Hunter L et al. PRAADA: Prenatal Right Aortic Arch and Double Arch: A Population-based Study to be published
- 5) Vigneswaran TV, Jones CB, Zidere V, Charakida M, Miller OI, Simpson JM, Sharland GK. Effect of Prenatal Laterality Disturbance and Its Accompanying Anomalies on Survival. Am J Cardiol. 2018 Aug 15;122(4):663-671. doi: 10.1016/j.amjcard.2018.04.040. Epub 2018, Jun 20. PMID: 29954599

Any Questions?

Yorkshire & Humber Congenital Heart Disease Network

